
Towards a Flow- and Path-Sensitive
Information Flow Analysis

Peixuan Li Danfeng Zhang

This work was supported by NSF grant CCF-156641

Challenges

Abstract – This paper investigates a flow- and path-sensitive static information flow analysis. Compared with security type systems with fixed
labels, it has been shown that flow-sensitive type systems allow accepting more secure programs. We show that an information flow analysis
with fixed labels can be both flow- and path-sensitive. The novel analysis has two major components: 1) a general-purpose program
transformation that removes false dataflow dependency in a program that confuses a fixed-label type system, and 2) a fixed-label type system
that allows security type to depend on path conditions. We formally prove that the proposed analysis enforces a rigorous security property:
noninterference. Moreover, we show that the analysis is strictly more permissive than a classical flow-sensitive type system, and it allows sound
control of information flow in the presence of mutable variables without resorting to run-time mechanisms.

Flow- & Path- Sensitive Type System

Conclusions

 I N
S R

Information Flow Security

Program (insecure)
Secret Input

s

Public Input
p

Observable Output
p

Implicit Flow – Secret Inferred by
observed different branch results

Explicit Flow – Secret Revealed by assignment

Related Publications
[1]. S. Hunt and D. Sands, “On flow-sensitive security types,” in POPL 33, 2006, pp. 79–90.
[2]. T. H. Austin and C. Flanagan, “Efficient purely-dynamic information flow analysis,” in
Proc. 4th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS), 2009, pp. 113–124.  
[3]. A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive  security analysis,” in
Proc. 23rd IEEE Computer Security Foundations Symposium (CSF), ser. CSF ’10, 2010,
pp. 186–199.  
[4]. D. Zhang, A. Askarov, and A. C. Myers, “Language-based control and mitigation of
timing channels” in ACM SIGPLAN Notices, 2012,. 47(6), 99-110.
[5]. A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE
Journal on Selected Areas in Communications, vol. 21, no. 1, pp. 5–19, Jan. 2003.
[6]. L. Lourenc ̧o and L. Caires, “Dependent information flow types,” in  Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium  on Principles of Programming
Languages, 2015, pp. 317–328.  
[7]. N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A language for enforcing user-defined
security policies,” in Proc. IEEE Symp. on Security and Privacy, 2008, pp. 369–383.  
[8]. T. Amtoft, S. Bandhakavi, and A. Banerjee, “A logic for information flow in object-
oriented programs,” in Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2006, pp. 91–102.

Program (secure)

q Conservativeness
q Checked → Secure

q Flow Sensitivity: Differentiate for the order of the execution
q Path Sensitivity: Consider the predicates at conditional branches

q Implicit Declassification: mutable branch variables

Secure Program
Check
Passed

False Alarm

Flow Sensitivity

Insecure Program:

Path Sensitivity
Never Executed Together

Implicit Declassification

Possibly Executed Together

Program (Secure)

Program (Insecure)

1. Transformation

2. Dependent Label

Dependent Security Type System

Evaluated under the predicate P, assignee e
must have a lower level than assigner x.

x may NOT be a dependent free variable of any alive variable.

1. Transformation

2. Dependent Label

External Module

Predicate Generator –

Constraint Solver

Liveness Analysis –

3. Type Check with Constraints

3. Type Check with Constraints

q Novel information flow analysis
q Path-sensitive
q Flow-sensitive
q Purely Static method
q Formalized soundness prove for

q Terminate-insensitive Non-interference

q On-Going Work
q Implementation

q Java Polyglot
q Type Inference – lower annotation burden

