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Abstract – This paper investigates a flow- and path-sensitive static information flow analysis. Compared with security type systems with fixed 
labels, it has been shown that flow-sensitive type systems allow accepting more secure programs. We show that an information flow analysis 
with fixed labels can be both flow- and path-sensitive. The novel analysis has two major components: 1) a general-purpose program 
transformation that removes false dataflow dependency in a program that confuses a fixed-label type system, and 2) a fixed-label type system 
that allows security type to depend on path conditions. We formally prove that the proposed analysis enforces a rigorous security property: 
noninterference. Moreover, we show that the analysis is strictly more permissive than a classical flow-sensitive type system, and it allows sound 
control of information flow in the presence of mutable variables without resorting to run-time mechanisms. 
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q Conservativeness
q Checked → Secure 

q Flow Sensitivity: Differentiate for the order of the execution
q Path Sensitivity: Consider the predicates at conditional branches

q Implicit Declassification: mutable branch variables
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1. Transformation 

2. Dependent Label 

Dependent Security Type System

Evaluated under the predicate P, assignee e 
must have a lower level than assigner x.

x may NOT be a dependent free variable of any alive variable.
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Predicate Generator –

Constraint Solver

Liveness Analysis –

3. Type Check with Constraints 

3. Type Check with Constraints 

q Novel information flow analysis
q Path-sensitive
q Flow-sensitive
q Purely Static method
q Formalized soundness prove for 

q Terminate-insensitive Non-interference

q On-Going Work
q Implementation 

q Java Polyglot
q Type Inference – lower annotation burden


