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v Given program and set of known program input locations.
v Generate access dependence graphs.

v Generate program dependence graph to capture all 
information flows.

v Leverage taint analysis to identify security sensitive 
operations.

v Inject provenance hooks for each security sensitive operation.
v Generate access provenance graphs using additional runtime 

data.
v Use statically generated access dependence graphs to identify 

matching access provenance graphs in runtime data and present 
them to an analyst.

Problems
v Access control and authorization mechanisms are implemented 

manually in practice.
v Lack of knowledge, negligence, or malicious intent can lead to 

bugs and vulnerabilities (bypass, backdoors, etc.).
v Correctness of access control enforcement depends on runtime 

factors, such as the access control policy and adversary 
controlled inputs.

v Combination of static and dynamic analysis are necessary to vet 
access control and authorization mechanisms within programs. 

Overview

v Given program and known locations of user credentials 
(username, password).

v Leverage taint analysis to identify candidate authorization code 
within program by intersecting taint labels.

v Generate program chops to understand the relationship of user 
input to authorization and security sensitive operations.
v Pre-authorization chops.
v Intra-authorization chops.
v Post-authorization chops.

v Analyze computed chops for instruction sequences that dictate 
data tampering.

v Present tampering instructions to analyst for further investigation.

v Evaluated provenance tracking technique on 
OpenMRS’s test suite.
v Found 29 cases where authorization was not 

present.
v Found a single case where permissions were 

not consistent with similar authorization 
elsewhere in the program.

v Found a case where a single authorization 
hook dominated several security sensitive 
operations, where additional permissions 
should have been checked.

v Hook injection only induced a 2.1% performance 
overhead when running the test suite.

v Analysis of maliciously modified version of vsftpd.
v Taint analysis identified 2 functions that perform 

authorization.
v Generated intra-authorization programs identified 7 LLVM 

instructions corresponding to a single source line of code
related to data tampering.

v Bit manipulation instructions check whether the first 4 
characters of the username match “KU3p”. If they do, the 
username is changed to “root”.

v Security sensitive operations may be performed without 
authorization entirely.

v Multiple distinct operations my be authorized with the same 
permission set.

v Authorization may dominate multiple operations.
v Data relevant to authorization may be tampered with before, 

during, or after authorization possibly altering how authorization is 
performed.
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Figure 1. Partial Authorization

Figure 2. Consistency

Partial Authorization:
v Subject “Admin123” is authorized to getUser() 

from database.
v Uses object to get login credentials of User 

without additional authorization.
v Gathers secret question from users 

credentials.

Consistency:
v Subject “Admin123” is authorized to perform 

two distinct operations to “edit” and “delete” a 
person from database.

v Same permission set is used for both 
operations, which is inconsistent to similar 
operations elsewhere in the program.

v2 = a1 + 56;
v3 = *(int **)(a1 + 56);
*v3 = v4 ^ *((_DWORD *)&v92 + (((v4 - 1882412364) & (unsigned int)(v4 - 1882412363)) >> 
31) - 24);
…
if ( sub_1A770(v3, v6) ) // Performs authentication for modified username
{

...
}
...
v7 = 1; // Set return value for authentication (1 = success)
return v7;

“KUp3”


