
Techniques to Identify Bugs in
Authorization

Frank Capobianco, Giuseppe Petracca, Nirupama Talele, Christian
Skalka, Gang Tan, and Trent Jaeger

Supported by National Science Foundation, DARPA, and Lincoln Lab

Detecting Access Control Errors Detecting Data Tampering

Evaluation

 I N
S R

v Given program and set of known program input locations.
v Generate access dependence graphs.

v Generate program dependence graph to capture all
information flows.

v Leverage taint analysis to identify security sensitive
operations.

v Inject provenance hooks for each security sensitive operation.
v Generate access provenance graphs using additional runtime

data.
v Use statically generated access dependence graphs to identify

matching access provenance graphs in runtime data and present
them to an analyst.

Problems
v Access control and authorization mechanisms are implemented

manually in practice.
v Lack of knowledge, negligence, or malicious intent can lead to

bugs and vulnerabilities (bypass, backdoors, etc.).
v Correctness of access control enforcement depends on runtime

factors, such as the access control policy and adversary
controlled inputs.

v Combination of static and dynamic analysis are necessary to vet
access control and authorization mechanisms within programs.

Overview

v Given program and known locations of user credentials
(username, password).

v Leverage taint analysis to identify candidate authorization code
within program by intersecting taint labels.

v Generate program chops to understand the relationship of user
input to authorization and security sensitive operations.
v Pre-authorization chops.
v Intra-authorization chops.
v Post-authorization chops.

v Analyze computed chops for instruction sequences that dictate
data tampering.

v Present tampering instructions to analyst for further investigation.

v Evaluated provenance tracking technique on
OpenMRS’s test suite.
v Found 29 cases where authorization was not

present.
v Found a single case where permissions were

not consistent with similar authorization
elsewhere in the program.

v Found a case where a single authorization
hook dominated several security sensitive
operations, where additional permissions
should have been checked.

v Hook injection only induced a 2.1% performance
overhead when running the test suite.

v Analysis of maliciously modified version of vsftpd.
v Taint analysis identified 2 functions that perform

authorization.
v Generated intra-authorization programs identified 7 LLVM

instructions corresponding to a single source line of code
related to data tampering.

v Bit manipulation instructions check whether the first 4
characters of the username match “KU3p”. If they do, the
username is changed to “root”.

v Security sensitive operations may be performed without
authorization entirely.

v Multiple distinct operations my be authorized with the same
permission set.

v Authorization may dominate multiple operations.
v Data relevant to authorization may be tampered with before,

during, or after authorization possibly altering how authorization is
performed.

Publications
v Capobianco, F., Skalka, C., & Jaeger, T. (2017). AccessProv: Tracking the Provenance of Access Control

Decisions. In Proceedings of the 9th USENIX Conference on Theory and Practice of Provenance. USENIX
Association. (In Submission)

v Muthukumaran, D., Talele, N., Jaeger, T., & Tan, G. (2015, March). Producing Hook Placements to Enforce
Expected Access Control Policies. In International Symposium on Engineering Secure Software and
Systems (pp. 178-195). Springer International Publishing.

v Petracca, G., Capobianco, F., Skalka, C., & Jaeger, T. (2017). On Risk in Access Control Enforcement.
Proceedings of the 22nd ACM on Symposium on Access Control Models and Technologies. ACM.

Figure 1. Partial Authorization

Figure 2. Consistency

Partial Authorization:
v Subject “Admin123” is authorized to getUser()

from database.
v Uses object to get login credentials of User

without additional authorization.
v Gathers secret question from users

credentials.

Consistency:
v Subject “Admin123” is authorized to perform

two distinct operations to “edit” and “delete” a
person from database.

v Same permission set is used for both
operations, which is inconsistent to similar
operations elsewhere in the program.

v2 = a1 + 56;
v3 = *(int **)(a1 + 56);
*v3 = v4 ^ *((_DWORD *)&v92 + (((v4 - 1882412364) & (unsigned int)(v4 - 1882412363)) >>
31) - 24);
…
if (sub_1A770(v3, v6)) // Performs authentication for modified username
{

...
}
...
v7 = 1; // Set return value for authentication (1 = success)
return v7;

“KUp3”

