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IS Interaction Necessary for
Distributed Private Learning?
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Recent large-scale deployments of differentially private algorithms employ
the local model for privacy, where data are randomized on individual’s
devices before being sent to an server that computes approximate,

What Can We Learn Privately?

aggregate statistics. The server need not be trusted for privacy, leaving individual

data control in users’ hands. ~
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communication. The server exchanges messages with each user only

once, but must do so in sequence.
We ask: how much interaction is necessary to optimize convex functions

In the local DP model?

Local Differential Privacy Lower Bound on Interaction

* Consider database of sensitive individual data (e.g., medical
records, purchase history)
* Want: Run learning/statistical algorithms while preserving privacy
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the next inner layer

Adaptive Private Local Learning

Non-interactive Private Local Learning
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/Theorem. LetC € RP,and let£:C XD - R be a 1-
Lipschitz loss function. For every distribution P on D, with
probability 99/100, one can output a 6 € C, such that
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+  Using min{p log(n) ,%} rounds of interaction for

Lipschitz loss function

Using log(n/p) rounds of interaction for Lipschitz,
smooth, and strongly convex function
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