Emerging Non-Volatile Memories-Applications, Challenges and Solutions

Swaroop Ghosh

School of EECS, The Pennsylvania State University

szg212@psu.edu

Why Emerging NVM?

Recent Commercialization of Emerging NVMs

Phase Change RAM*

Intel unveils its Optane hyperfast memory

Intel released few key details around its new non-volatile memory

Published: March 9, 2017

Everspin unveils a new low latency, PCIe NVMe card based on Spin Torque MRAM

ReRAM

Western Digital to Use 3D ReRAM as Storage Class Memory for Special-Purpose SSDs

by Anton Shilov on August 12, 2016 8:00 AM EST

Emerging Technologies

- Single bit/cell
- Footprint = ~ 12 -40F²
- Random access
- Read/write latency
 - Read/write of MTJ
- Read: Sensing MTJ resistance
- Write: Flip free layer

DWM

- Multiple bits/cell
- Footprint = $2.5F^2$
- Tailored for serial access
- Read/write latency
 Shift + read/write of MTJ
- Read: Sensing MTJ resistance
- Write: Flip NW domain

ReRAM

- Multiple bit/cell
- Footprint = $\sim 4F^2$
- Random access
- Read/write latency
 Read/write of ReRAM
- Read: Sensing ReRAM resistance
- Write: break or make conductive path

Outline

Introduction and motivation

Applications

- Last level cache
- Energy efficient computing
- Security
- Challenges
 - Retention test
 - Long read/write latency
 - High asymmetric read/write current

Solutions

- Retention compression
- Circuit to system synergistic design
- Attack sensors and prevention
- Sensing circuit

Summary

Last Level Cache

- Performance improvement: 3-33%
- Power reduction: 1.2X-14.4X

Digital Signal Processing and Neuro-Inspired Computing

- DWM based Viterbi decoder
 - 66.4 % area and 59.6 % power savings
- DWM based 8K point FFT processor
 - 60.6 % area and 60.3 % power savings
 - Neuro-inspired computing
 - 34% energy savings compared to memristor based computing
 - Bit-width extendibility

Energy-Efficient Memory Design

Copyright: Swaroop Ghosh

Spintronics for Security

ReRAM for Security

R. Govindaraj, ICCD, 2016

Outline

Introduction and motivation

Applications

- Last level cache
- Energy efficient computing
- Security
- Challenges
 - Retention test
 - Long read/write latency
 - High asymmetric read/write current

Solutions

- Retention compression
- Circuit to system synergistic design
- Attack sensors and prevention
- Sensing circuit

Summary

NVM Characteristics-High Retention Time

High test time due to high retention time of bitcell

- Cannot waive retention characterization
- Test question
 - How to reduce test time of NVMs?

A. Iyengar, Swaroop Ghosh, S. Srinivasana, "Retention testing of STTRAM", IEEE Design and Test (D&C), 2016

How to characterize retention in presence of variations

NVM Characteristics-High Retention Time (Stochastic Variation)

Random variation in magnetization

- Retention time of the same bit changes over time
- Require multiple execution of test to guarantee retention time
- Test question
 - How to identify the worst case retention time?

Data Privacy Issues in NVM

- Persistent data can be accessed between power cycle
- Short retention bitcells can be used to autoerase the data in clear
 - Freezing of chip can modulate the retention
 - Encryption is latency sensitive
- New features are needed to secure the data

Table-I Simulation Parameters

Log(Retention time)

-2

Parameter	Value
Saturation	780 Oe
Magnetization (Ms)	
Uniaxial Anisotropy (Ku)	150150 erg/cc
Damping Constant (α)	0.007
Δ for Tret of 1s, 10s,	20.73, 23.02 &
100s	25.33
Length and Width	40nmX40nm

How to characterize magnetic tolerance

Jae-won Jang, Jongsun Park, Swaroop Ghosh, Swarup Bhunia, "Self-Correcting STTRAM under Magnetic Field Attacks", IEEE Design Automation Conference (DAC), 2015

NVM Characteristics- Sensitivity to Ambient Parameters

Experimental validation (HOST'16 demo)

Test question

- Jae-won Jang, Swaroop Ghosh, ISLPED, 2016
- How to characterize NVM under sensitivities
- Can we detect security attacks?

NVM Characteristics-High and Asymmetric Write and Read Current

Identifying test pattern to validate worst case droop

R. Aluru, Swaroop Ghosh, "Droop mitigating last level STTRAM cache", DATE, 2017

Security Implications- Privacy

N. Rathi, S Ghosh, H. Naeimi, "Side Channel Attacks on STTRAM and Low-Overhead Countermeasures", DFT 2016

NVM Characteristics-High and Asymmetric Write and Read Latency

- Long tail of read and write latency
- Test question
 - How to characterize write and read latency at fast test time?

Outline

Introduction and motivation

Applications

- Last level cache
- Energy efficient computing
- Security
- Challenges
 - Retention test
 - Long read/write latency
 - High asymmetric read/write current

Solutions

- Retention compression
- Circuit to system synergistic design
- Attack sensors and prevention
- Sensing circuit

Summary

Retention Testing using Test Time Compression

Test time with lower retention is low

Retention Testing using Test Time Compression

M. N.,I. Khan A. Iyengar, Swaroop Ghosh, "Magnetic burn-in for STTRAM retention testing", DATE, 2017

Energy-Efficient Memory Design

Energy-Efficient Memory Design

Magnetic Field Sensor

- Key requirements
 - Proactive sensing
 - Sense magnitude and polarity
- Sensor design
 - Small volume for early sensing
 - Weak write of sensor array to fail early
- Challenges
 - Identifying false alarms
 - Power consumption in sensor

Prevention (1)- Stalling

Stall the CPU and wait till the attack is over

For gradually ramping attack

- Better than shutting down the entire system
- Will not work for sudden attack since dirty data is corrupted

26

Prevention (2)- Cache Bypassing

- Key ideas
 - Since LLC is under attack, bypass it
 - Perform computation seamlessly without LLC
 - Update the main memory before starting bypass
 - Invalidate LLC before exiting bypass

Prevention (3)- Checkpointing

Key ideas

- Save processor state and update main memory periodically
- If attack, go back to last saved state & start with LLC bypass
- Can handle sudden corruption of memory

Challenges

- Need to stop main memory writeback between checkpoints
- Performance loss due to checkpoint which depends on
 - ⇒ Epoch
 - ⇒ LLC full

*Nitin Rathi, Asmit De, *Helia Naeimi and Swaroop Ghosh, "Cache Bypassing and Checkpointing to Circumvent Data Security Attacks on STTRAM", http://arxiv.org/abs/1603.06227

Protecting Data Privacy

Nitin Rathi, Swaroop Ghosh, Anirudh iyengar and Helia Naeimi, "Data Privacy in Non-Volatile Cache: Challenges, Attack Models and Solutions", ASPDAC. 2016.

0

Current (mA)

-4

-6

0

Conclusions

- Emerging NVMs are promising for broad range of applications
- NVMs possess unique challenges that could be design and security issues
- We proposed novel techniques to solve the challenges
- Proposed solutions are also applicable to other NVMs

Thank You!

Acknowledgements

LOGICS lab students, collaborators from Intel, Nanyang Tech Univ (NTU), Univ. of Florida, Iowa State, Univ. of Cincinnati and Korea Univ.

Graduate Students

A. Iyengar('13) H. Motaman('13) A

P:6, Pat:1

D. Vontela C. Lin R. Aluru

P:1+2*, Pat:0 P:3, Pat:2 P:1*, Pat:0 P:2, Pat:1

A. Saki ('17)

P:0, Pat:0 I. Reddy

P:3+2*, Pat:1

J. Jang('15)

P:4, Pat:1 A. De ('16)

?

Md. N. Khan ('16)

P:1*, Pat:0

- Graduated
 - 5 MS: Kenneth Ramclam, Jae-won Jang, Radha Aluru, Deepak Vontela, Ithihasa Reddy
 - Published more than 40 IEEE papers in last 5 years

*LOGICS: Lab. Of Green and secure Integrated Circuits and Systems