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Why Emerging NVM?
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Recent Commercialization of 
Emerging NVMs
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Emerging Technologies 

 Multiple bits/cell

 Footprint = 2.5F2

 Tailored for serial 
access

 Read/write latency
 Shift + read/write 

of MTJ

 Read: Sensing MTJ 
resistance 

 Write: Flip NW 
domain

 Single bit/cell

 Footprint = ~12-
40F2

 Random access

 Read/write latency
 Read/write of 

MTJ

 Read: Sensing MTJ 
resistance

 Write: Flip free 
layer

DWMSTTRAM

 Multiple bit/cell

 Footprint = ~4F2

 Random access

 Read/write latency
 Read/write of 

ReRAM

 Read: Sensing 
ReRAM resistance

 Write: break or 
make conductive 
path

ReRAM



Outline

 Introduction and motivation

 Applications
 Last level cache
 Energy efficient computing
 Security

 Challenges
 Retention test
 Long read/write latency
 High asymmetric read/write current

 Solutions 
 Retention compression
 Circuit to system synergistic design
 Attack sensors and prevention
 Sensing circuit

 Summary 
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Last Level Cache

 Performance improvement: 3-33% 

 Power reduction: 1.2X-14.4X
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Digital Signal Processing and Neuro-
Inspired Computing

 DWM based Viterbi 
decoder 
 66.4 % area and 

59.6 % power 
savings

 DWM based 8K point 
FFT processor
 60.6 % area and 

60.3 % power 
savings

 Neuro-inspired 
computing
 34% energy savings 

compared to 
memristor based 
computing
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Energy-Efficient Memory Design
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Spintronics for Security
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ReRAM for Security

 Sense circuits in conventional memory architecture
employed as arbiter

 Number of CRPs increase exponentially with array size

 Minimally invasive

 0.13% intra HD and 51.3% inter HD with sufficient
response randomness

10R. Govindaraj, ICCD, 2016
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 Challenges
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 Long read/write latency
 High asymmetric read/write current
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 Circuit to system synergistic design
 Attack sensors and prevention
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NVM Characteristics-High Retention 
Time

 High test time due to high retention time of bitcell
 Cannot waive retention characterization

 Test question
 How to reduce test time of NVMs?
 How to characterize retention in presence of variations

A. Iyengar, Swaroop Ghosh, S. Srinivasana, “Retention testing of

STTRAM”, IEEE Design and Test (D&C), 2016



NVM Characteristics-High Retention 
Time (Stochastic Variation)

 Random variation in magnetization
 Retention time of the same bit changes over time
 Require multiple execution of test to guarantee retention time

 Test question
 How to identify the worst case retention time?

A. Iyengar, Swaroop Ghosh, S. Srinivasana, “Retention testing of

STTRAM”, IEEE Design and Test (D&C), 2016



Data Privacy Issues in NVM

 Persistent data can be accessed between 
power cycle 

 Short retention bitcells can be used to auto-
erase the data in clear
 Freezing of chip can modulate the retention 
 Encryption is latency sensitive 

 New features are needed to secure the data
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NVM Characteristics- Sensitivity to 
Ambient Parameters

 Test challenge
 How to characterize magnetic tolerance

Impact of DC field
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NVM Characteristics- Sensitivity to 
Ambient Parameters

 Test question
 How to characterize NVM under sensitivities
 Can we detect security attacks?

Reference voltage shift
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http://www.hostsymposium.org/hardware-demo-list.php
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NVM Characteristics-High and 
Asymmetric Write and Read Current

 High write current triggers droop
 Depends on pattern

 Test question
 Identifying test pattern to validate worst case droop
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Security Implications- Privacy

 Test question
 Characterize asymmetric write current

N. Rathi, S Ghosh, H. Naeimi, “Side Channel Attacks on STTRAM and Low-Overhead Countermeasures “, DFT 2016 18
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NVM Characteristics-High and 
Asymmetric Write and Read Latency

 Long tail of read and write latency

 Test question
 How to characterize write and read latency at fast test 

time?
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Retention Testing using Test Time 
Compression

 Exploit STTRAM sensitivity to compress retention time

 Test time with lower retention is low
21

M. N.,I. Khan A. Iyengar, Swaroop Ghosh, “Magnetic burn-in for STTRAM retention testing”, DATE, 2017



Retention Testing using Test Time 
Compression

M. N.,I. Khan A. Iyengar, Swaroop Ghosh, “Magnetic burn-in for STTRAM retention testing”, DATE, 2017



Energy-Efficient Memory Design

 ~30% perf 
improvement

 >10X power 
saving
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Energy-Efficient Memory Design
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Slope sensing circuit
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Magnetic Field Sensor

 Key requirements
 Proactive sensing
 Sense magnitude and polarity

 Sensor design
 Small volume for early sensing
 Weak write of sensor array to fail early

 Challenges
 Identifying false alarms
 Power consumption in sensor

-33%

2X 80X

2X

400us

100us

1us

50Oe
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Prevention (1)- Stalling

 Stall the CPU and wait till the attack is over

 For gradually ramping attack 
 Better than shutting down the entire system 
 Will not work for sudden attack since dirty data is corrupted

 For sudden attack 
 Processor is restarted after the attack
 Applications can resume from application level checkpointing

 Both approaches disable computations during attack
 Attacker can exploit these features to drain the battery

26
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Prevention (2)- Cache Bypassing

 Key ideas
 Since LLC is under attack, bypass it
 Perform computation seamlessly without LLC
 Update the main memory before starting bypass
 Invalidate LLC before exiting bypass 

*Nitin Rathi, Asmit De, *Helia Naeimi and Swaroop Ghosh, “Cache Bypassing and Checkpointing to Circumvent Data Security Attacks on 

STTRAM”, http://arxiv.org/abs/1603.06227 27



Prevention (3)- Checkpointing

 Key ideas
 Save processor state and update main memory periodically
 If attack, go back to last saved state & start with LLC bypass
 Can handle sudden corruption of memory

 Challenges
 Need to stop main memory writeback between checkpoints
 Performance loss due to checkpoint which depends on 
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Protecting Data Privacy
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Conclusions

 Emerging NVMs are promising for broad 
range of applications 

 NVMs possess unique challenges that could 
be design and security issues

 We proposed novel techniques to solve the 
challenges 

 Proposed solutions are also applicable to 
other NVMs
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