
Efficient inter-module CFG construction
using code pointer restrictions

Nirupama Talele, Frank Capobianco, Xinyang Ge,
Gang Tan, and Trent Jaeger

Supported by National Science Foundation

Approach Inter-module Analysis

 Attackers can enable a legitimate program to execute an arbitrary and malicious piece of code by hijacking the control flow of the
programs. Control Flow Integrity (CFI) is the defense mechanism used to prevent these kind of exploits that compromise the
program by enforcing the restriction on the targets of control transfer in a program.

An accurate Control Flow Graph (CFG) should be computed to ensure the efficiency of the CFI enforcement.

! In general the problem of valid target computation is an un-decidable problem, various approximate approaches to produce
coarse grained and fine grained results have been used to enforce CFI.

! It is found that most of the coarse grained approach are still susceptible to code reuse attacks like ROP, while the fine grained
approach tend to be performance intensive.

We propose an approach to produce fine grained forward edge control flow policy by enforcing some restrictions on the code pointers
in the programs, this enables us to compute a precise policy without performance intensive processing. We observe that these
restrictions are obeyed in most cases and propose a remedy to handle the programs which violate the restrictions.

Results

 I N
S R

We compute the legal targets for an indirect invocation by performing
static taint propagation without the extensive points to analysis.

We apply the following restrictions on the usage of function pointers in
the code:

! [A1]: The only allowed operation on function pointer are
assignment and dereferencing.

! [A2]: There exists no data pointer to a function pointer.
The above restrictions have been found to hold largely for kernel
software like FreeBSD and MINIX microkernel [1].

We test whether this approach can be applied effectively for user-
space programs, and found that a majority of the programs comply
with the restrictions.

We observed that to ensure soundness in user-space programs we
need to add another restriction for isolating data and code pointers.

! [A3]: Function pointers may not be cast to or cast from a data
pointer.

We perform our test on base packages that come with Ubuntu
16.04 distribution, a total of 950 packages with 2,349 binaries.

Out of those, 871 binaries have either indirect calls or pass
function pointers to libraries out of which we found violations in
147 binaries, i.e. about 16.9%.

Method Binary Files
Analyzed

Resolved
Indirect Calls Total Targets

Average
Targets per

call

Taint Based 455 19,532 81,352 4.16

Signature Based 455 19,532 388,226 19.87

Binaries Indirect Calls Inter-mod
Targets

Merged
Targets

Percentage
Increase

170 11,766 42,577 43,882 3.1

The following table shows the comparison between targets
computed using signature matching approach and our taint
based approach.

Violation Analysis

We also evaluate the gain in precision due to inter-module
analysis with and without statically linking.

 [1] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-flow integrity for kernel software. In IEEE European Symposium
on Security and Privacy (EuroS&P), IEEE, 2016.

Another challenge for user space programs is the policy
computation across dependent and dynamically loaded
modules.

We iteratively process the dependent modules for code
pointer information exchange and compute the complete
policy for the application.

Related Work

