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Need	for	stronger	security

2

Standard	security	mechanisms	are	unsatisfactory



Language-based	security
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Redesign	programming	languages	for	security

Provably	enforce	security	
at	the	language	level



Today’s	talk
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Full-system	timing	channel	control
[CCS’10,	CCS’11,	PLDI’12,	ASPLOS’15,	ASPLOS’17]

Proving	differential	privacy
[POPL’17]

Joint	work	with	Aslan Askarov,	Andrew	Ferraiuolo,	Daniel	Kifer,
Andrew	Myers, G.	Edward	Suh and	Yao	Wang	and	Rui Xu



Timing	channels
• Information	channels	in	which	adversary	learns	
secret	data	by	analyzing	timing	of	public	events
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1996

Hey, You, Get Off of My Cloud: Exploring 
Information Leakage in Third-Party Compute Clouds [Ristenpart et al.]

Cross-VM Side Channels and Their Use to Extract Private Keys
[Y. Zhang et al.]

2003

2005

2006
2007

2009

2012

Timing	channels	are	
real	threats	to	security!

Covert and Side Channels Due to Processor Architecture [Wang&Lee]

On the Power of Simple Branch Prediction Analysis [Aciiçmez et al.]

Yet Another MicroArchitectural Attack: Exploiting I-Cache [Aciiçmez]

Cache Attacks and Countermeasures: the Case of AES [Osvik et al.]

Cache-Timing Attacks on AES [Bernstein]
Cache Missing for Fun and Profit [Percival]

Remote Timing Attacks are Practical [Brumley&Boneh]

Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems [Kocher]
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How	to	build	secure	systems
that	provably control	all
timing	channels?



Security	model
• Security	policy	lattice
– Information	has	label describing	intended	conf.
– In	general,	the	labels	form	a	lattice
– For	this	talk,	a	simple	lattice:

S:	secret								P:	public
• Attacker	model	(at	label	P	in	the	talk)
– Sees	contents	of	public	memory	(storage	channel)
– Sees	timing	of	updates	to	public	memory	(timing	
channel)

S

P
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A	subtle	example
1 if (secret1)
2   secret2:=public1;
3 else
4 secret2:=public2;
5 public3:=public1;

Programming	model	does	not	capture	timing!
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The	data	cache
affects	timing



if (secret1)
secret2:=pulbic1;

else
secret2:=public2;

public3:=public1;

Beneath	the	language	abstractionconcise and	
sufficient
interface?
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Compiler	
optimizations

OS

Data/instruction	
cache

Branch	target	
buffer

Data/instruction	
TLB



A	language-level	abstraction	[PLDI’12]
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logically	partitioned	
by	security	label
(e.g.	public	part	vs.	
secret	part	of	cache,
time-multiplexed
pipeline)

Machine	environment:	state	affecting	
timing	but	invisible	at	language	level

S

P

machine	environment

Each	operation	has	read	label,	write	label
governing	interaction	with	machine	environment(x	:=	e)

[ℓr,ℓw]



Read	labels

• Restricts	how	machine	environment	
affects	timing
• Upper	bound	on	timing	influence
– e.g.,	secret	cache	cannot	affect	execution	
time	when	read	label	is	P
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S

P
(x :=	e)[P,ℓw]

(x	:=	e)[ℓr,ℓw]



Write	labels

• Restricts	how	machine	environment	is	
modified
• Lower	bound	on	updates	to	machine	env.
– e.g.,	no	updates	to	public	cache	when	write	
label	is	S

13

S

P

S’

P=
after	execution

(x	:=	e)[ℓr,S]

(x	:=	e)[ℓr,ℓw]



A	core	language	with	read/write	labels
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Most	can	be	
automatically	

inferred
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S

P

machine	environment	(ME)

(x	:=	e)
[ℓr,ℓw]

Obeys	the	timing	contract
(formalized	in	[PLDI’12])

Read/Write	labels	form	a	contract
Reason	about	timing	channels	
based	on	the	contract
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S

P

machine	environment	(ME)

(x	:=	e)
[ℓr,ℓw]

Security	enforcement
A	type	system	checks	
timing	channels	[PLDI’12]

A	Verilog	extension	
that	statically	verifies
HW	designs	[ASPLOS’15,	17]



Formally	verified	MIPS	processor

Rich	ISA:	runs	OpenSSL with	off-the-shelf	GCC
Classic	5-stage	in-order	pipeline
– Typical	pipelining	techniques
• data	hazard	detection
• stalling
• data	bypassing
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Overhead	of	hardware	resources

Baseline Verified Overhead
Delay	w/	FPU	(ns) 4.20 4.20 0%
Delay	w/o	FPU	
(ns)

1.64 1.66 1.21%

Area (𝜇𝑚#) 399400 402079 0.67%
Power	(mW) 575.5 575.6 0.02%
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unmodified/
insecure



RSA	case	study
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Insecure	processor	+	Insecure	code

Secure	processor	+	SW	enforcement			

Overhead:	
~12%	in	total

leakage	is	
eliminated

key1

key2



Today’s	talk
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Proving	differential	privacy
[POPL’17]
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Database w/
Alice’s data

Database w/o
Alice’s data

Alice’s data remain private if 𝜇$, 𝜇# are close

𝜇$ 𝜇#



(Pure)	Differential	privacy
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𝜇$ 𝜇#
If for any adjacent databases and value 𝑣, 
𝜇$(𝑣)/𝜇#(𝑣) ≤ 𝑒,for some constant 𝜖, then
a computation is 𝜖-private

𝜇$(𝑣)	 𝜇#(𝑣)	

Privacy
Cost



Motivation
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Rigorous methods are needed for 
differential privacy proofs

DP	has	seen	explosive	growth	since	2006
–U.S.	Census	Bureau	[Machanavajjhala et	al.	2008]

–Google	Chrome	Browser	[Erlingsson et	al.	2014]
–Apple’s	new	data	collection	efforts	[Greenberg	2016]

But	also	accompanied	with	flawed	(paper-and-
pencil)	proofs
–e.g.,	ones	categorized	in	[Chen&Machanavajjhala’15,	Lyu et	al.’16]	



LightDP:	Overview
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Source	Program

Relational,	
Dependent	
Type	System

Target	Program	with	
distinguished	 variable

Source program 
type checks

Source program is 𝜖-private

Main Theorem
v, bounded by constant 𝜖
in the target program



Source	language:	syntax
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Random 
variable

Random 
Expression

(e.g., Laplace dist.)



Relational	types
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Related Memories
𝑥:	u           𝑥: u
𝑦: v           𝑦: v+1

Example
Γ 𝑥 : num7
Γ(𝑦): num$

Base Type Distance

e.g., int, real



Dependent	types
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Can be a program 
variable

Related Memories
𝑥: 	u 𝑥: u
𝑦: v 𝑦: v + u

Example
Γ 𝑥 : num7
Γ(𝑦): num9



Dependent	types
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Related Memories
𝑥:	u        𝑥: u

𝑦: v        𝑦: :v + 2, u ≥ 1
v								, u < 1

Can be a non-prob. 
expression

Example
Γ 𝑥 : num7

Γ(𝑦): num9?$?#:7

𝑚$	Γ	𝑚# if 𝑚$ and𝑚#
are related by Γ

Notation
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(for the non-probabilistic subset)
Types form an invariant on two related 
program executions: 

Then after executing
a well-typed program,
final memories

𝑚$ 𝑚#

𝑚$
A 𝑚#

A

If initial memories Γ

Γ

Enforced by a type system



In	general,	maintaining	the	distances	
may	incur	privacy	cost
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Source	program
Target	program	with	
distinguished	 variable

Type	System

source program target program



Target	language
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Verification task in the target language:
Proving       is bounded by some constant 𝜖 in any execution

(in a non-probabilistic program)

A safety property. Can be verified 
using off-the-shelf tools 

(e.g., Hoare logic, model checking)

set x to arbitrary value



Putting	together
The	Sparse	Vector	Method	[Dwork and	Roth’14]
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Source Program
•Correctness proof is subtle

Incorrect variants categorized in 
[Chen&Machanavajjhala’15, Lyu et al.’16] 

•Formally verified very 
recently [Barthe et al. 2016] 
with heavy annotation burden



Required	types
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Distance depends on 
the value of 𝑖th query

answer (𝑞[𝑖])

Types can be inferred by the 
inference algorithm of LightDP

Type Inference



Target	program
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Completing	the	proof
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Loop Invariant

Postcondition: 

Source	program	type	checks
+												bounded	by	constant	𝜖
=	source	program	is	𝜖-private

Main Theorem
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Thank	you!


