
Designing	Programming	Languages	
for	Provably	Secure	Systems

Danfeng Zhang
INSR	Industry	Day	2017

Need	for	stronger	security

2

Standard	security	mechanisms	are	unsatisfactory

Language-based	security

3

Redesign	programming	languages	for	security

Provably	enforce	security	
at	the	language	level

Today’s	talk

4

Full-system	timing	channel	control
[CCS’10,	CCS’11,	PLDI’12,	ASPLOS’15,	ASPLOS’17]

Proving	differential	privacy
[POPL’17]

Joint	work	with	Aslan Askarov,	Andrew	Ferraiuolo,	Daniel	Kifer,
Andrew	Myers, G.	Edward	Suh and	Yao	Wang	and	Rui Xu

Timing	channels
• Information	channels	in	which	adversary	learns	
secret	data	by	analyzing	timing	of	public	events

5

6

1996

Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-Party Compute Clouds [Ristenpart et al.]

Cross-VM Side Channels and Their Use to Extract Private Keys
[Y. Zhang et al.]

2003

2005

2006
2007

2009

2012

Timing	channels	are	
real	threats	to	security!

Covert and Side Channels Due to Processor Architecture [Wang&Lee]

On the Power of Simple Branch Prediction Analysis [Aciiçmez et al.]

Yet Another MicroArchitectural Attack: Exploiting I-Cache [Aciiçmez]

Cache Attacks and Countermeasures: the Case of AES [Osvik et al.]

Cache-Timing Attacks on AES [Bernstein]
Cache Missing for Fun and Profit [Percival]

Remote Timing Attacks are Practical [Brumley&Boneh]

Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems [Kocher]

7

How	to	build	secure	systems
that	provably control	all
timing	channels?

Security	model
• Security	policy	lattice
– Information	has	label describing	intended	conf.
– In	general,	the	labels	form	a	lattice
– For	this	talk,	a	simple	lattice:

S:	secret								P:	public
• Attacker	model	(at	label	P	in	the	talk)
– Sees	contents	of	public	memory	(storage	channel)
– Sees	timing	of	updates	to	public	memory	(timing	
channel)

S

P

8

A	subtle	example
1 if (secret1)
2 secret2:=public1;
3 else
4 secret2:=public2;
5 public3:=public1;

Programming	model	does	not	capture	timing!

9

The	data	cache
affects	timing

if (secret1)
secret2:=pulbic1;

else
secret2:=public2;

public3:=public1;

Beneath	the	language	abstractionconcise and	
sufficient
interface?

10

Compiler	
optimizations

OS

Data/instruction	
cache

Branch	target	
buffer

Data/instruction	
TLB

A	language-level	abstraction	[PLDI’12]

11

logically	partitioned	
by	security	label
(e.g.	public	part	vs.	
secret	part	of	cache,
time-multiplexed
pipeline)

Machine	environment:	state	affecting	
timing	but	invisible	at	language	level

S

P

machine	environment

Each	operation	has	read	label,	write	label
governing	interaction	with	machine	environment(x	:=	e)

[ℓr,ℓw]

Read	labels

• Restricts	how	machine	environment	
affects	timing
• Upper	bound	on	timing	influence
– e.g.,	secret	cache	cannot	affect	execution	
time	when	read	label	is	P

12

S

P
(x :=	e)[P,ℓw]

(x	:=	e)[ℓr,ℓw]

Write	labels

• Restricts	how	machine	environment	is	
modified
• Lower	bound	on	updates	to	machine	env.
– e.g.,	no	updates	to	public	cache	when	write	
label	is	S

13

S

P

S’

P=
after	execution

(x	:=	e)[ℓr,S]

(x	:=	e)[ℓr,ℓw]

A	core	language	with	read/write	labels

14

Most	can	be	
automatically	

inferred

15

S

P

machine	environment	(ME)

(x	:=	e)
[ℓr,ℓw]

Obeys	the	timing	contract
(formalized	in	[PLDI’12])

Read/Write	labels	form	a	contract
Reason	about	timing	channels	
based	on	the	contract

16

S

P

machine	environment	(ME)

(x	:=	e)
[ℓr,ℓw]

Security	enforcement
A	type	system	checks	
timing	channels	[PLDI’12]

A	Verilog	extension	
that	statically	verifies
HW	designs	[ASPLOS’15,	17]

Formally	verified	MIPS	processor

Rich	ISA:	runs	OpenSSL with	off-the-shelf	GCC
Classic	5-stage	in-order	pipeline
– Typical	pipelining	techniques
• data	hazard	detection
• stalling
• data	bypassing

17

Overhead	of	hardware	resources

Baseline Verified Overhead
Delay	w/	FPU	(ns) 4.20 4.20 0%
Delay	w/o	FPU	
(ns)

1.64 1.66 1.21%

Area (𝜇𝑚#) 399400 402079 0.67%
Power	(mW) 575.5 575.6 0.02%

18

unmodified/
insecure

RSA	case	study

19

Insecure	processor	+	Insecure	code

Secure	processor	+	SW	enforcement			

Overhead:	
~12%	in	total

leakage	is	
eliminated

key1

key2

Today’s	talk

20

Proving	differential	privacy
[POPL’17]

21

Database w/
Alice’s data

Database w/o
Alice’s data

Alice’s data remain private if 𝜇$, 𝜇# are close

𝜇$ 𝜇#

(Pure)	Differential	privacy

22

𝜇$ 𝜇#
If for any adjacent databases and value 𝑣,
𝜇$(𝑣)/𝜇#(𝑣) ≤ 𝑒,for some constant 𝜖, then
a computation is 𝜖-private

𝜇$(𝑣)	 𝜇#(𝑣)	

Privacy
Cost

Motivation

23

Rigorous methods are needed for
differential privacy proofs

DP	has	seen	explosive	growth	since	2006
–U.S.	Census	Bureau	[Machanavajjhala et	al.	2008]

–Google	Chrome	Browser	[Erlingsson et	al.	2014]
–Apple’s	new	data	collection	efforts	[Greenberg	2016]

But	also	accompanied	with	flawed	(paper-and-
pencil)	proofs
–e.g.,	ones	categorized	in	[Chen&Machanavajjhala’15,	Lyu et	al.’16]	

LightDP:	Overview

24

Source	Program

Relational,	
Dependent	
Type	System

Target	Program	with	
distinguished	 variable

Source program
type checks

Source program is 𝜖-private

Main Theorem
v, bounded by constant 𝜖
in the target program

Source	language:	syntax

25

Random
variable

Random
Expression

(e.g., Laplace dist.)

Relational	types

26

Related Memories
𝑥:	u 𝑥: u
𝑦: v 𝑦: v+1

Example
Γ 𝑥 : num7
Γ(𝑦): num$

Base Type Distance

e.g., int, real

Dependent	types

27

Can be a program
variable

Related Memories
𝑥: 	u 𝑥: u
𝑦: v 𝑦: v + u

Example
Γ 𝑥 : num7
Γ(𝑦): num9

Dependent	types

28

Related Memories
𝑥:	u 𝑥: u

𝑦: v 𝑦: :v + 2, u ≥ 1
v								, u < 1

Can be a non-prob.
expression

Example
Γ 𝑥 : num7

Γ(𝑦): num9?$?#:7

𝑚$	Γ	𝑚# if 𝑚$ and𝑚#
are related by Γ

Notation

29

(for the non-probabilistic subset)
Types form an invariant on two related
program executions:

Then after executing
a well-typed program,
final memories

𝑚$ 𝑚#

𝑚$
A 𝑚#

A

If initial memories Γ

Γ

Enforced by a type system

In	general,	maintaining	the	distances	
may	incur	privacy	cost

30

Source	program
Target	program	with	
distinguished	 variable

Type	System

source program target program

Target	language

31

Verification task in the target language:
Proving is bounded by some constant 𝜖 in any execution

(in a non-probabilistic program)

A safety property. Can be verified
using off-the-shelf tools

(e.g., Hoare logic, model checking)

set x to arbitrary value

Putting	together
The	Sparse	Vector	Method	[Dwork and	Roth’14]

32

Source Program
•Correctness proof is subtle

Incorrect variants categorized in
[Chen&Machanavajjhala’15, Lyu et al.’16]

•Formally verified very
recently [Barthe et al. 2016]
with heavy annotation burden

Required	types

33

Distance depends on
the value of 𝑖th query

answer (𝑞[𝑖])

Types can be inferred by the
inference algorithm of LightDP

Type Inference

Target	program

34

Completing	the	proof

35

Loop Invariant

Postcondition:

Source	program	type	checks
+												bounded	by	constant	𝜖
=	source	program	is	𝜖-private

Main Theorem

36

Thank	you!

