Designing Programming Languages
for Provably Secure Systems

Danfeng Zhang
INSR Industry Day 2017

"2 PennState INSTITUTE FOR NETWORKING
¥ College of Engineering AND SECURITY RESEARCH

Need for stronger security

Standard security mechanisms are unsatisfactory

Language-based security

public class TcpClientSample

{

public static void Main ()

pytell data = newvw byte\xeztx“

TcpClient server;

crytl
s

Redesign programming languages for security

Provably enforce security

at the language level

Today’s talk

@\ . .
//f Y Full-system timing channel control
‘{\\‘;\g;-_;fgzif‘“ [CCS’10, CCS’11, PLDI'12, ASPLOS’15, ASPLOS’17]

@ Proving differential privacy
PRIVACY [POPL'17]

Joint work with Aslan Askarov, Andrew Ferraiuolo, Daniel Kifer,
Andrew Myers, G. Edward Suh and Yao Wang and Rui Xu

4

Timing channels

* Information channels in which adversary learns
secret data by analyzing timing of public events
()

\ . N S
25 RN
W = = —

2 2 : /
*

[.

-

=
= |

A —
) /’ - 4 vk
g P, fﬁ’ -
LN/ -3 —
& VA
< ;;:15_’1

=
7"~
0 (

‘//'%\ Timing channels are
‘(\\U, real threats to security!

1996 j Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems [Kocher]

2003 | Remote Timing Attacks are Practical [Brumley&Boneh]

Cache Attacks and Countermeasures: the Case of AES [Osvik et al]
Cache Missing for Fun and Profit [percival]
Cache-Timing Attacks on AES [Bemstein]

2006 | Covert and Side Channels Due to Processor Architecture wangs.Lee)
2007 | Yet Another MicroArchitectural Attack: Exploiting I-Cache (aciime
On the Power of Simple Branch Prediction Analysis [Aciigmez etal]
2009 | Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-Party Compute Clouds [Ristenpart et al.]
2012 | Cross-VM Side Channels and Their Use to Extract Private Keys

[Y. Zhang et al.]
6

How to build secure systems
that provably control all
timing channels?

Security model

* Security policy lattice
— Information has label describing intended conf.

— In general, the labels form a lattice S
— For this talk, a simple lattice: T
S: secret P: public

»

* Attacker model (at label P in the talk)
— Sees contents of public memory (storage channel)

— Sees timing of updates to public memory (timing
channel)

g b w N

A subtle example

1f (secretl)
secret2:=publicl;

else
secret2:=public2;

public3:=publicl;

The data cache
affects timing

Programming model does not capture timing!

concise and
sufficient
interface?

ls&

secret2:=public2;
public3:=publicl;

language abstraction

Compiler
optimizations

Data/instruction |
- cache

Branch target
buffer

Data/instruction
TLB :

A language-level abstraction [pLDI'12]

Each operation has read label, write label
goverrr’&g,igt%j]ction with machine environment

[£.L,]

Machine environment: state affecting

timing bytigvisikleablanguage level

logically partitioned §
by security label |
(e.g. publicpart vs.
secret part of cache, &
time-multiplexed :
pipeline)

11

Read labels

(X := e)[fr,ffw]
* Restricts how machine environment
affects timing
* Upper bound on timing influence

—e.g., secret cache cannot affect execution
time when read label is P

.
N\

ﬁf\

7
R\
cf~ i\
y '; (M~ 22"
W< N~
N v 4
‘v, ',
S

(X :=e)

[P,t,]

N

Write labels
(X := e)[fp{,w]
e Restricts how machine environment is
modified

* Lower bound on updates to machine env.

—e.g., no updates to public cache when write
label is S

(X := e)[[r’s]

P = P

—>
after execution 13

A core language with read/write labels

e:=nlx|eope
c:i=skipy, 1| (x:=e)y, | cic| (while edoc)y 4,

| (if e thency else o)y 41| (sleep e)r,.r,]

Most can be
automatically

. inferred)

14

Read/Write labels form a contract

Reason about timing channels
N, (x :=e) based on the contract
[£,L,]

machine environment (ME)

Obeys the timing contract
(formalized in [PLDI’12])

15

Security enforcement
A type system checks

(A0 Al g channel oz

machine environment (ME)

A Verilog extension

that statically verifies
HW designs [AsPLOS 15, 17]

16

Formally verified MIPS processor

Rich ISA: runs OpenSSL with off-the-shelf GCC
Classic 5-stage in-order pipeline
— Typical pipelining techniques
* data hazard detection

e stalling
* data bypassing

Overhead of hardware resources

unmodified/
Insecure
. |Baseline
Delay w/ FPU (ns) 4.20 4.20 0%
Delay w/o FPU 1.64 1.66 1.21%
(ns)
Area (um?) 399400 402079 0.67%

Power (mW) 575.5 575.6 0.02%

18

decryption time

7

X10")

)) in cycles (

7

decryption time
in cycles (+3.2X10

RSA case study . .

~12% in total

Insecure processor + Insecure code

28? | | | | | | | | |
keyl , " |:|- 3 el . .
e "' ' F'.rt:‘ ‘; ;.".‘- O, fﬁ "." Sl - E'l-f ,"i- T 4'“"-"* *"" i ~r‘; “;" ' "'ﬂ ' ..'~;Tl-"rt'
P T LA S b N T T A B T
286, I - ‘ -
M«W\,\WVM/J
285 | | | | | | | | |
0O 10 20 30 40 50 60 70 80 90 100
-~ Secure processor + SW enforcement
eyl ' | | | leakage is
1923 | " eliminated
1922
1921 F -
1 920]]]]
0 20 40 60 80 100

different encrypted messages

19

Today’s talk

Proving differential privacy
[POPL'17]

20

Database w/ Database w/o
Alice’s data Alice’s data

Alice’s data remain private if u,, u, are close

21

(Pure) Differential privacy

&2

\

i (v) 7\ pz (v)

H1

-
vaN

U2

If for any adjacent databases and value v,
u, (v)/u, (v) < e€for some constant ¢, then

a computation is e-private

22

DP
-U
-G

Motivation

has seen explosive growth since 2006
.S. Census Bureau [Machanavajjhala et al. 2008]

oogle Chrome Browser [rlingsson et al. 2014]

—Apple’s new data collection efforts (creenberg 2016]

But

also accompanied with flawed (paper-and-

pencil) proofs

—e.

2

g., ones CategOriZEd in [Chen&Machanavajjhala’15, Lyu et al.’16]

d

igorous methods are needed for
ifferential privacy proofs

23

LightDP: Overview

Source Program
moi= Lap (2/€);
T :=T+n;
cl :=0; c2 :=0; i :=0;
while (c1 < N)

no := Lap (4N/e);

if (q[i] +m2 >T) then

out:= true::out;

out:= false::out;
c2 :=c2 + 1;
i = 1i+1;

Main Theorem

Relational,

. E> pependent
alea TV Type System

Target Program with
distinguished variable V ¢

v, =0
havoc 71;Vv, 1=V, +€/2;
T:::7’+-nﬁ

cl :=0; c2 :=0; i := 0;
while (cl < N)
havoc ma2;Vv,. =V, + (q[i] +m2 =2 T?2:0) x ¢/4N;
if (qglij+mn2 >T) then
out:= true::out;

cl := cl+1;

else
out:= false: :out;
c2 := c2+1;

i = i+1;

Source progra
type checks

Ve
‘ Source program is e—privay

V. bounded by constant e
in the target program

24

Source language: syntax

Random
Random Expression
variable (e.g., Laplace dist.)
Commands c¢ ::= skip|z:=e|n:=g¢g|c1;c2 | returne

1f e then c1 else ¢y | while edoc

25

Relational types

Example Related Memories
['(x): num, X: U x: U
['(y): numy Y.V y: V+1

e.g., int, real

26

Dependent types

B Can be a program
o variable

Example Related Memories
['(x): num, X: U X: U
['(y):num, Y.V y:v+u

27

Dependent types

B Can be a non-prob.
q:l expression

Example Related Memories

['(x): num, x: U x: U

C(v): num o jv+2,u=1
) x21?2:0 Y.V V. {V u<1
Notation

my I'm, if my and m,
are related by I'

28

(for the non-probabilistic subset)
Types form an invariant on two related

program executions:

o

If initial memories my

Then after executing
a well-typed program,
final memories my I’ m;

Enforced by a type system

29

In general, maintaining the distances
may Incur privacy cost

Target program with

Source program distinguished variable V ¢
noi= Lap (2/€); v, =0
Zl::==7—(‘)j_212; :=0; 1 :=0; havoc 71:V. ==V, +¢€/2;

while (c1 < N) T:=T+n:; .
no := Lap (4N/~e); 5t1ul= (3;1C2< N=) 0; i = 0;
if (qli]+m >T) then Typ Sy tem > i
out:= true::out; e S e havoc ma;v,. := v, +(q[i] + 72 > T?2:0) x ¢/AN;
cl :=cl 1;

if (gli]+m >T) then

out:= true::out;
out:= false::out; cl := cl+1;
. c2 := c2 1; else
i = i+1; out:= false::out;
c2 := Cc2+1;
i = i+1;

' c — ¢

30

Target language

set x to arbitrary value

havoc x
Commands c¢ ::= skip |z := e | Hemm=g=| c1;c2 | returne |
1f e then cq else co | while edoc

Verification task in the target language:
Proving V¢ is bounded by some constant € in any execution
(in a non-probabilistic program)

A safety property. Can be verified

using off-the-shelf tools
(e.g., Hoare logic, model checking)

31

Putting together

The Sparse Vector Method pwork and rotir14)

Source Program

m := Lap (2/¢€);
T := T+ n;
cl := 0; c2 := 0; 1 :=
while (cl < N)
n2 := Lap (4N/e€);
if (q[i]+m2 >T) then

out:= true::out;

cl :=cl + 1;
else

out:= false: :out;

c2 :=c2 + 1;

i = i+1;

0;

*Correctness proof is subtle
Incorrect variants categorized in
[Chen&Machanavajjhala’15, Lyu et al.’16]

*Formally verified very
recently [Barthe et al. 2016]
with heavy annotation burden

32

Required types

~

c1,¢2,i tnumo; 7', 71 P nUML; N2 L DUM L oS oo,

:= L 2/€); :
m ap (2/¢) Distance depends on
T := T+ n; the value of ith query
cl (= 0; c2 :=0; 1 := 0;

answer (q[i])

n2 := Lap (4N/e);

if (q[i] +m2 >7T) then
out:= true::out;
cl :=cl + 1; Type Inference

else .
Types can be inferred by the

out:= false: :out;
c2 1= c2 + 1; inference algorithm of LightDP

i = i+1;

33

Target program

Ive = 0;
MU B VAW Ihavoc M;Ve := Ve + €/2;
T:=T+nﬁ
cl := 0; c2 := 0; 1 := 0;
while (c1 < N) Ihavoc n2; Ve := Ve + (qi] + m2 > T72:0) x 6/4N;|

e SR Saaraca

if (q[i]+n2 >T) then

out:= true::out;

cl :=cl + 1;
else

out:= false: :out;

c2 :=¢c2 + 1;

i = i+1;

34

Completing the proof

havoc 7)1;Ve := Ve + €/2;
T =T + m;

cl := 0; c2 := 0; 1 := 0y
while (cl < N) Loop Invariant

Invariant : c1 < N Ave =€/2+cl X 55

havoc 12;Ve := Ve + (¢[i] + m2 > T72:0) x €/4N;

if (q[i] +7m2>T) then
out:= true::out;
cl := cl+1;

else

out:= false::out;]
c2 1= c2+1; Main Theorem

i 1= i+1;

Source program type checks
+ V¢ bounded by constante
Postcondition: v, < € = source program is e-private

35

Thank you!

