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Web	Browsers:	
Rich	Application	Platforms
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Browser	Extensions	(Plug-ins)
• Extend	the	functionality	of	a	browser
– E.g.,	email	client,	pdf	viewer,	…

• All	major	browsers	allow	extensions
– Developed	by	third-party	vendors
– Communicate	with	the	browser	kernel	via	an	interface	
(NPAPI/PPAPI)

• Security	and	privacy	concerns?
– Extensions	in	the	same	address	space	as	the	browser
– Malicious/buggy	extensions	can	crash	the	browser,	corrupt	
the	browser	state,	or	leak	sensitive	information
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One	Solution:	Write	Extensions	in	a	
Safe	Language	(JavaScript)
• The	JavaScript	execution	engine	restricts	the	
behavior	of	JavaScript	code
– Interpret	and	monitor	JavaScript	code	for	security	and	
privacy	violations
• No	direct	access	to	the	internal	browser	state
• Privileged	operations	are	checked

– E.g.,	Chrome’s	V8	JavaScript	engine
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However,	Performance	Concern
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Source: The Computer Language Benchmarks Game 

C	vs.	JavaScript	Speed	Comparison



What	is	Desired	in	Writing	Browser	
Extensions?
• Develop	extensions	in	any	language
– Including	C/C++

• Important
– When	performance	is	critical

• E.g.,	graphics-intensive	video	games

– When	incorporating	legacy	code	developed	in	other	
languages
• No	need	to	rewrite	it	in	JavaScript
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Internet	Explorer’s	ActiveX	Controls

• Allow	IE	to	install	native-code	extensions
• No	security	provided
– Native	extensions	run	without	any	constraint

• Ask	users	before	installation
– Delegate	security	to	users	never	a	good	idea

7



Chrome’s	Native	Client

• Safely	running	native-code	
extensions	in	Chrome
– Security:	a	sandbox around	
an	extension

– Much	better	performance	
than	JavaScript	

– Accommodate legacy	code
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NaCL Sandbox



NaCl’s Sandboxing	Mechanism
• Based	on	Software-based	Fault	Isolation	(SFI)

– [Wahbe et	al. SOSP	1991]

• Establish	a	logical	sandbox	around	an	extension
– The	sandbox	is	in	a	pre-specified	memory-address	range
– Sandbox	enforced	through	automatic	rewriting of	
extension	code
• Insert	checks	before	dangerous	operations
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The	SFI	Policy

SFI Sandbox

Code	Region

CB

CL

Data	Region

DB

DL

Data	aspect:
All	mem	reads/writes	
remain	in	[DB,	DL]

External	Interface	
FunctionsEI

Control-flow	aspect:
All	jumps	targets	in	
[CB,CL]	or	EI
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Enforcing	the	SFI	Policy
• Use	a	compiler	to	insert	checks	into	the	program	
before	dangerous	instructions	(reads,	writes,	and	
jumps)
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mem(a+12)	:=	b //unsafe	write

if	(a+12)	<	DB	then	goto exit
if	(a+12)	>	DL	then	goto exit
mem(a+12)	:=	b

//	more	efficient
c	:=	mask(a+12)
mem(c)	:=	b

The	masking	
forces	c	to	be	in	
the	data	region



Automatic	Software	Hardening

• Perform	program	transformation to	embed	security	checks	
into	the	executable	code
– Detect	attacks	during	runtime	

• Low	performance	overhead
– No	context	switch	(reference	monitor	is	inlined)
– Security	checks	can	be	optimized	using	static	analysis

• Remove/move	checks	[Zeng,	Tan,	Morrisett	CCS	2011]

• Can	enforce	any	safety	policy	such	as	SFI	[Schneider	1998]
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Code Compiler

Executable	
Code

+	checks



Can	We	Trust	the	Compiler?

• Compilers	may	be	buggy
– It	may	insert/optimize	checks	in	a	wrong	way

• NaCl uses	a	modified	gcc compiler
– 7.3	million	lines	of	code,	as	of	2012

• Hundreds	of	compiler	bugs	found	in	recent	work
– [Yang	et	al.	PLDI	2011],	[Wang	et	al. SOSP	2013]	

13

Source
Code Compiler

Executable	
Code

+	checks



Trust,	But	Verify	
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OK

Verifier

Verifier:	validates	if	checks	are	inserted	
correctly	to	enforce	the	policy

• No	need	to	trust	the	compiler
• Its	size	is	thousands	of	lines	of	code

Source
Code Compiler

Executable	
Code

+	checks

No: fix bugs



Now,	Can	We	Trust	the	Verifier?
• As	security	researchers,	we	need	to	be	paranoid	…
• Google	NaCl’s verifier
– It	checks	if	an	input	binary	satisfies	the	SFI	policy
– Pile	of	C	code	with	a	manually	written	decoder	for	binaries

• A	bug	in	the	verifier	could	result	in	a	security	breach
– Google	ran	a	security	contest	early	on	NaCl:		bugs	found	in	
its	verifier!

Question:	How	to	construct	high-fidelity	verifiers?
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Verifying	the	Verifier
• Goal:	a	provably	correct	verifier
• Theorem:	if	some	binary	passes	the	verifier,	then	the	
execution	of	the	binary	should	obey	the	intended	SFI	
policy
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RockSalt [Morrisett,	Tan,	Tassarotti,	Gan,	
Tristan	PLDI	2012]
• A	new	SFI	verifier	for	x86-32
• Smaller

– Google:	manually	written	code	for	partial	decoding	;	plus	600	
lines	of	C	driver	code

– RockSalt:	regexps for	partial	decoding	;	plus	80	lines	of	C	driver	
code

• Faster:	on	200Kloc	of	C
– Google’s:		0.9s
– RockSalt:		0.2s

• Stronger:	RockSalt is	proven	correct
– The	proof	is	machine	checked	in	an	interactive	theorem	prover

(Coq)
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RockSalt Architecture
Verifier Regexps for	partial	

decoding
Driver	for	checking	SFI	

constraints

x86	
model Decoder	

Spec

Instruction	
semantics	

RTL	machine

~5,000	
Coq	
code

Correctness	
Proof ~10,000	

Coq	
proofsPartial	decoding	

correctness
Properties	of	
instructions

SFI	theorem	and	proof
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Going	Beyond	Fault	Isolation
• More	advanced	properties	can	be	enforced	via	
software	hardening
– Control-Flow	Integrity	(CFI)
– Data-Flow	Integrity	(DFI)
– Fine-grained	memory-access	control
– Memory	safety
– Taint	tracking
– …
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Control-Flow	Integrity:	
Preventing	Control-Flow	
Hijacking	Attacks



Example	of	Control-Flow	Hijacking

foo:	…
call	bar

bar:	…
ret

Injected
code

Stack	smashing

A	library	
function

Return	to	libc

Code	
gadgets

Return-Oriented
Programming (ROP)	attacks

What	if	bar	has	a	
buffer	overflow	and	
the	return	address	is	
changed?



Control	Flow	Integrity	(CFI)	[Abadi et	al.
CCS	2005]
1) Pre-determine	a	control-flow	graph	(CFG)	of	a	

program
2) Enforce	the	CFG	by	instrumenting	indirect	

branches in	the	program
• Instrumentation:	insert	checks	before	indirect	branches
• Indirect	branches	include	returns,	indirect	calls,	and	

indirect	jumps

CFI	Policy:	execution	of	the	instrumented	program	
follows	the	pre-determined	CFG,	even	under	attacks
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Control	Flow	Graphs	(CFG)

• Nodes are	addresses	of	basic	
blocks	of	instructions

• Edges connect	control	
instructions	(jumps	and	
branches)	to	allowed	
destination	basic	blocks
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CFI:	Mitigating	Control-Flow	Hijacking

foo:	…
call	bar

bar:	…
ret

Injected
code

Stack	smashing

A	libc
function

Return	to	libc

Code	
gadgets

Return-Oriented
Programming (ROP)	attacks

CFI-ret

Check	if	the	target	is	
allowed	by	the	CFG
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Previous	CFI	Work

• Performance:	20-25%	overhead	in	the	original	CFI	
work

• No	support	for	modularity
– All	code,	including	libraries,	must	be	available	during	static	
compilation	time

– No	support	for	dynamic	libraries	(or	code	generated	on	
the	fly	by	just-in-time	compilers)

– Each	program	has	to	have	its	own	instrumented	version	of	
libraries

25



CFG	Changes	When	Linking	Modules
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foo1:	…
call	bar

bar:	…
ret

Module	1

foo2:	…
call	bar

Module	2 After	linking,	new	
edges	may	be	added
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Modular	Control	Flow	Integrity	(MCFI)	
[Niu &	Tan	PLDI	2014,	CCS	2015]
• CFG	encoded	as	centralized	tables
– Checks	consult	tables	for	CFI	enforcement
– Updated	during	dynamic	linking

• Benefits	of	centralized	tables
– Tables	separate	from	code;	instrumentation	unchanged	
after	tables	changed

– Favorable	memory	cache	effect
– Easier	to	achieve	thread	safety
– Easier	to	protect	the	tables	against	attacker	corruption
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MCFI	System	Flow
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Program

Code
Data

Meta	info

MCFI
Runtime

Address	space

ID	tables

Code	+	Data

Library

Code
Data

Meta	info

Check
Tables

Dyn linking

Bld new	CFG;
update	tables
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CFG	Generation	for	C/C++
• A	seemingly	easy	problem
– But	the	hard	question	is	how	to	compute	control-flow	
edges	out	of	indirect	branches

– Quite	complex	considering	function	pointers,	signal	
handlers,	virtual	method	calls,	exceptions,	etc.

• Tradeoff	between	precision	and	performance
– Remember	it	has	to	be	performed	online	when	libraries	
are	dynamically	linked

– Sophisticated	pointer	analysis	is	perhaps	too	costly
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MCFI’s	Approach	for	CFG	Generation

• A	type-based	approach	for	C/C++	code
• An	MCFI	module	contains	code,	data,	and	meta	
information (mostly	about	types)

• MCFI	modules	are	generated	from	source	code	by	an	
augmented	LLVM	compiler

• Note:	there	are	alternative	approaches	for	CFG	
generation
– Dr.	Trent	Jaeger’s	group	proposed	a	taint-based	approach
– See	posters
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CFG	Construction	for	Indirect	Branches

• Indirect	call	“call	fp”,	where	fp is	of	type	t*
It	is	allowed	to	call	function	f	if
(1)	f’s	type	is	some	t’	that	is	structurally	equivalent	to	t,	and	
(2)	f’s	address	is	taken	in	the	code	(i.e.,	“&f”	is	somewhere	in	
code)

• Returns:	first	construct	a	call	graph;	allow	a	return	to	
go	back	to	any	caller	in	the	call	graph
– Also	need	to	take	care	of	tail	calls

• Other	cases:	indirect	jumps;	setjmp/longjmp,	
variable-argument	functions,	signal	handlers,	…
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MCFI	Performance	Overhead	on	
SPEC2006
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Improving	the	Security	of	
Languages	with	Managed	
Runtimes



Languages	with	Managed	Runtimes
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Managed	Runtimes	and	Security
• A	language	with	a	managed	runtime	is	typically	safer
– The	runtime	restricts	program	behavior	via	dynamic	
monitoring

– E.g.,	the	Java	Virtual	Machine	performs	stack	inspection

• However,	
– Managed	runtimes	are	developed	in	unsafe	languages	
(C++)

– They	use	Just-in-Time	(JIT)	compilation	to	generate	native	
code	on	the	fly
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Performance	Boosting	Using	
Just-In-Time	Compilation	(JIT)
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Java 
Bytecode

Optimized 
Native Code

JVM

Interpretation JIT	compilation

JIT	Compiler,	
Written	in	C/C++

Writable and Executable!



Security	Threats	to	JIT	Compilation
• JIT	compilers
– Typically	written	in	C++	for	high	performance
– 500,000	to	several	million	lines	of	code
– Memory	corruption	->	control-flow	hijacking	attacks

• JITted code	(native	code	generated	on	the	fly)
– JITted code	overwriting	[Chen	et	al.,	2014]

• Because	the	region	that	contains	JITted code	is	both	writable	and	
executable

– JIT	spraying	[Blazakis,	2010]
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JIT	Spraying	Example
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var y = 
0x3C0BB090 ^ 0x3C80CD90

X86 assembly: movl $0x3C0BB090, %eax; xorl $0x3C80CD90, %eax
Code bytes:  B890B00B3C              3590CD803C

Normal	code	execution

90   B00B            3C35             90   CD80 
nop; movb $0xB, %al; cmpb $0x35, %al; nop; int $0x80

JavaScript	code	
by	the	attacker

If	the	attacker	hijacks	the	control	flow	and	
jumps	1-byte	ahead.

The	“exec” system	call



Observations
• JIT-spraying	is	the	result	of	control-flow	hijacking
• Modules	in	JIT	compilation
– The	code	in	a	JIT	compiler
– JITted code:	dynamically	generated	code;	dynamically	
linked	to	the	JIT	compiler’s	code
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RockJIT [Niu &	Tan	CCS	2014]

• Extend	Modular	CFI	to	cover	JIT	compilation
• For	the	JIT	compiler
– (Offline)	Statically	builds	its	CFG	and	encodes	it	as	runtime	
tables

• JITted code
– Treat	each	piece	of	newly	generated	code	as	a	new	module
– (Online)	Build	a	new	CFG	that	covers	the	new	code	and	the	
JIT	compiler’s	code
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Adapting	A	JIT	Compiler	to	RockJIT
• The	code-emission	logic	needs	to	be	changed	to	emit	
MCFI-compatible	code	(with	CFI	checks)

• JITted code	manipulation	should	be	changed	to	
invoke	RockJIT-provided	safe	primitives
– Code	installation:	when	new	code	is	generated	by	the	JIT	
compiler

– Code	modification:	during	code	optimizations	such	as	
inline	caching

– Code	deletion:	when	code	becomes	obsolete

• ~800	lines	of	source	code	changes	to	Google’s	V8
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RockJIT-Protected	V8	on	Octane	2	
JavaScript	Benchmarks
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Avg overhead:	14.6%



Recap
• Compilers	can	be	used	to	automatically	harden	code
– For	fault	isolation,	for	control-flow	integrity,	for	…

• To	harden	dynamic	code	(dynamic	libraries,	runtime	
code	generation,	…)
– Some	work	performed	at	runtime	(e.g.,	CFG	construction)
– Need	to	balance	security	and	performance
– Also	need	to	accommodate	concurrency	(not	discussed)
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Some	Ongoing	Research
• Automatic	software	partitioning

– Partitioning	monolithic	software	into	least-privileged	
components

– Joint	with	Shen	Liu	and	Dr.	Trent	Jaeger
• Binary-level	reverse	engineering	and	hardening

– Reverse	engineer	binary	code	and	perform	automatic	hardening
– Joint	with	Dongrui Zeng

• Compiler-based	side	channel	mitigation
– Static	analysis	for	side	channel	identification
– Program	transformation	for	side	channel	mitigation
– Joint	with	Rob	Brotzman-Smith	and	Dr.	Danfeng Zhang

• See	posters	for	details
• …
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Backup	slides
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Automatic	Software	Hardening
• Integrate	the	reference	monitor	into	the	code	(Inlined

Reference	Monitors,	IRM)

47

¨ Verifier:	verifying	that	checks	are	inlined correctly	
(so	that	the	proper	policy	is	enforced)

¨ Benefits
¤ Small	trusted	computing	base
¤ Low	performance	overhead	(no	context	switch)
¤ Can	enforce	any	safety	policy	[Schneider	1998]

RewriteProgram Program
+	Checks

OK
Verifier



A	Flavor	of	the	x86	Model
• Syntax
– NOT:	bool ->	operand	->	instr

• Decoding
Definition NOT_p	:	grammar	instr	:=
"1111"	$$	"011"	$$	anybit	$	ext_op_modrm2	"010"	@
(fun	p =>	NOT (fst p)	(snd p))
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Decode	pattern

Semantic	action:	
construct	a	NOT	instr



A	Flavor	of	the	x86	Model,	cont’d
• Semantics
Definition conv_NOT (pre:	prefix)	(w:	bool)	(op:	operand)	:	Conv
unit	:=
let	load	:=	load_op pre	w	in
let	set	:=	set_op pre	w	in
let	seg :=	get_segment_op pre	DS	op	in
p0	<- load	seg op;
max_unsigned <- load_Z _	(max_unsigned size32);
p1	<- arith xor_op p0	max_unsigned;
set	seg p1	op.

49



A	Flavor	of	the	Proofs
Lemma NOT_same_pc:	forall pre	w	op,
same_pc (conv_NOT pre	w	op).

Proof.	
…
Qed.

Theorem rocksalt_correct:	forall …,	…
Proof.	
…	
Qed.
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NOT	does	not	change	
the	program	counter.



CFG	Statistics	for	SPEC2006	Programs
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IBs:	#	of	indirect	
branches

IBTs:	#	of	possible	
indirect	branch	targets

EQCs:	#	of	equivalence	
classes;	upper	
bounded	by	IBs

SPEC2006 IBs IBTs EQCs
perlbench 3327 18378 1857
bzip2 1711 4064 1171
gcc 6108 50412 3258
mcf 1625 3851 1140
gobmk 3908 14556 1631
hmmer 2038 7906 1471
sjeng 1777 4826 1220
libquantum 1688 4169 1182
h264 2455 7046 1526
milc 1825 5879 1310
lbm 1612 3839 1128
sphinx 1893 6431 1369
namd 4795 17552 2829
dealII 13623 61392 7836
soplex 6304 22350 3499
povray 6274 28666 3704
omnetpp 7790 35689 4035
astar 4769 16695 2859
xalancbmk 31166 97186 11281



ID	Tables
• ID	tables	encode	a	CFG
• Divide	target	addresses	into	equivalent	classes,	each	

assigned	an	ID
• Branch	ID	table	(Bary table)

– A	map	from	the	location	of	an	indirect	branch	to	the	ID	of	the	
equivalent	class	that	the	indirect	branch	is	allowed	to	jump	to

• Target	ID	table	(Tary table)
– A	map	from	an	address	to	the	ID	of	the	equivalent	class	of	the	

address
• Conceptually,	for	an	indirect	branch,

– Load	the	branch	ID	using	the	address	where	the	branch	is
– Load	the	target	ID	using	the	real	target	address
– Compare	the	two	IDs;	if	not	the	same,	CFI	violation
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Thread	Safety	of	Tables
• The	tables	are	global	data	shared	by	multiple	threads

– One	thread	may	read	the	tables	to	decide	whether	an	indirect	
branch	is	allowed

– Another	thread	loads	a	library	and	triggers	an	update	of	the	
tables

• To	avoid	data	races,	wrap	table	operations	into	
transactions	and	use	Software	Transactional	Memory	
(STM)
– Check	transaction	(TxCheck):	used	before	an	indirect	
branch

– Update	transaction	(TxUpdate): used	when	a	library	is	
dynamically	linked
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Why	STM?
• A	check	transaction
– Performs	speculative	table	reads,	assuming	no	
threads	are	updating	the	tables

– If	the	assumption	is	wrong,	it	aborts	and	retries
• Why	is	this	more	efficient	than,	say,	locking?
– Many	more	indirect	branches	compared	to	loading	
libraries?

– Many	more	check	transactions	than	update	
transactions

– So	check	transactions	rarely	fail
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