Automatic Software Security

Hardening

Gang Tan
School of EECS, Penn State Univ.

INSR Industry Day, Apr 24", 2017

@ PennState ELECTRICAL ENGINEERING

@ College of Engineering AND COMPUTER SCIENCE

Web Browsers:
Rich Application Platforms

" @ Google Docs - Documents 7 & Something to concisur whe...

€ C A % hitp://docs.google.com/D

> a0 O F- . Cmail [o]

Gmail Calendar Documents Reader Web more v rsmudge@gmail.com | Settings v | Sign out Mail - c vore 1150115 a-
— x

Couglc docs Something to conoisur when talking to Share ~ Display Density

[cowose | Chromebooks are here - google. com/chromebook - Bt for the web - 8 hour battery. Instant resume & 8 second startup. ¥ Comfortable
File Edit View Insert Format Table Tools Help co

Inbox (5) o
| & v ~ [~ Heading2 ~/Verdana v 14pt ~[B|Z U Av & Lk i= Stared ® Phil Sharp EZEE San Francisco trip Compact

tam

& »
spe" Checking Sent Mail Peter Harbison Halloween Plans Settings

0, 2011 EREN Themes
Something to conoisur when talking to a wine conoisur.

blace/Palace rof +Fine +Arts - Theatre/ @37.8035463, 122.4469615,172/dat Help

sox (1 InfaWorks 3 News (3 mail £ Personal (3 Toos C11CON [Home - GreenTeoms

Detects Misused Words

v o T
Bob wants to know weather his collage’ pid you mean...
| hecki college oo o Detits
Style Checking Exlin.. oct 10
” » et -
Airport planning is a systematic process 1070re suggestion _— Warna B
development of airports consistent witt Ignore always Suog S eacico m M va o ™ 2 s oct 10
standards and provides guidance on na g selectio) Ve B0 ("
objective of airport planning is to assure te errec > 5 ¥ E > oct 10
~
3viation demand in a financially feasible manner. P — e —
45 kkk k) 373 reviews. Oct 10
[] Google+ Hangouts - Google Chromel ¢ » C @ Toceon " V. — 2 oct 10
& https://plus.google.com/h e
plus.goog oct 10
oy M Oct 10
H @ Google+

chat

screenshare

capture
google effects
you tube

remote desktop Invite peog

Share theé permanent link. Bookmark and come £

https://plus.google.com/hangouts/_/gqdgvevxfzyfbx5t

While you're waiting. H gle Effec

PennState ELECTRICAL ENGINEERING
College of Engineering AND COMPUTER SCIENCE

Browser Extensions (Plug-ins) ,’*%5

95 «(,‘ > X
w"© %
&

J

e Extend the functionality of a browser

— E.g., email client, pdf viewer, ...

* All major browsers allow extensions

— Developed by third-party vendors
— Communicate with the browser kernel via an interface
(NPAPI/PPAPI)
e Security and privacy concerns?
— Extensions in the same address space as the browser

— Malicious/buggy extensions can crash the browser, corrupt
the browser state, or leak sensitive information

ELECTRICAL ENGINEERING

3 "~ PennState
@ College of Engineering AND COMPUTER SCIENCE

One Solution: Write Extensions in a

Safe Language (JavaScript)

* The JavaScript execution engine restricts the

behavior of JavaScript code

— Interpret and monitor JavaScript code for security and

privacy violations

 No direct access to the internal browser state

* Privileged operations are checked O — A
— E.g., Chrome’s V8 JavaScript engine e N
JavaScript
Code
N J

4 *~J PennState
3 College of Engineering

ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

However, Performance Concern

500

400

300

200

100

C vs. JavaScript Speed Comparison

C GNU gcc mmm
JavaScript V8 s

Source: The Computer Language Benchmarks Game Ks

5

*~3 PennState
3 College of Engineering

ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

What is Desired in Writing Browser
Extensions?

* Develop extensions in any language
— Including C/C++

* Important

— When performance is critical
e E.g., graphics-intensive video games
— When incorporating legacy code developed in other
languages

* No need to rewrite it in JavaScript

6 *~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Internet Explorer’s ActiveX Controls

 Allow IE to install native-code extensions

* No security provided
— Native extensions run without any constraint

* Ask users before installation
— Delegate security to users never a good idea

Please wait while the Download Manager

= Degins your download.

This website wants to install the following add-on: ‘Download
Manager' from 'Akamai Technologies Inc..
What's the risk?

7 ‘-4 PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Chrome’s Native Client @ NaCI

e Safely running native-code
extensions in Chrome

— Security: a sandbox around
an extension

— Much better performance
than JavaScript

— Accommodate legacy code

000
I\E\ + Y nttp:/ wwaw.google.co.uk ¢ [(Qr Google \O\I

Coogle

NaCL Sandbox

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

NaCl’s Sandboxing Mechanism

* Based on Software-based Fault Isolation (SFl)
— [Wahbe et al. SOSP 1991]
e Establish a logical sandbox around an extension
— The sandbox is in a pre-specified memory-address range

— Sandbox enforced through automatic rewriting of
extension code
* Insert checks before dangerous operations

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

The SFI Policy

10

&

PennState
College of Engineering

ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

Enforcing the SFI Policy

 Use a compiler to insert checks into the program
before dangerous instructions (reads, writes, and
jumps

jumps) The masking

forces c to be in

mem(a+12) :=b //unsafe write ,
the data region

> 4

if (a+12) < DB then goto exit // more efficient

if (a+12) > DL then goto exit ¢ := mask(a+12)
mem(a+12) :=b mem(c) :=b

ELECTRICAL ENGINEERING

11 "~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Automatic Software Hardening

S Executable
ource

Code > Compiler — Code
— + checks

* Perform program transformation to embed security checks
into the executable code
— Detect attacks during runtime
* Low performance overhead
— No context switch (reference monitor is inlined)
— Security checks can be optimized using static analysis
* Remove/move checks [zeng, Tan, Morrisett CCS 2011]

* Can enforce any safety policy such as SFI [Schneider 1998]

ELECTRICAL ENGINEERING

"~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Can We Trust the Compiler?

Source

¢

Code [Compiler —

Wz N

* Compilers may be buggy

— It may insert/optimize checks in a wrong way

e NaCl uses a

modified gcc compiler

— 7.3 million lines of code, as of 2012

Executable
Code
+ checks

 Hundreds of compiler bugs found in recent work
— [Yang et al. PLDI 2011], [Wang et al. SOSP 2013]

‘-4 PennState
3 College of Engineering

ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

Trust, But

Source

—

Code [Compiler —

Verify

V'

No: fix bugs

Verifier: validates if checks are inserted
correctly to enforce the policy

e Noneedt

o trust the compiler

e |tssize is thousands of lines of code

‘-4 PennState
3 College of Engineering

Executable
Code
+ checks

l

Verifier

l oK

ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

Now, Can We Trust the Verifier?

* As security researchers, we need to be paranoid ...

* Google NaCl’s verifier
— It checks if an input binary satisfies the SFI policy
— Pile of C code with a manually written decoder for binaries

A bugin the verifier could result in a security breach

— Google ran a security contest early on NaCl: bugs found in
its verifier!

Question: How to construct high-fidelity verifiers?

ELECTRICAL ENGINEERING

15 "~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Verifying the Verifier

* Goal: a provably correct verifier

 Theorem: if some binary passes the verifier, then the
execution of the binary should obey the intended SFI

policy

16 *~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

RockSalt [Morrisett, Tan, Tassarotti, Gan,
Tristan PLDI 2012]

e A new SFl verifier for x86-32

e Smaller

— Google: manually written code for partial decoding ; plus 600
lines of C driver code

— RockSalt: regexps for partial decoding ; plus 80 lines of C driver
code

e Faster: on 200Kloc of C
— Google’s: 0.9s
— RockSalt: 0.2s
* Stronger: RockSalt is proven correct

— The proof is machine checked in an interactive theorem prover
(Coq)

ELECTRICAL ENGINEERING

17 "~ PennState
@ College of Engineering AND COMPUTER SCIENCE

RockSalt Architecture

decoding

{Veriﬁer [Regexps for partial

] Driver for checking SFI
constraints

(
Correctness

O\ N

Proof l SFl theorem and proof l ~10,000
> (Co0(Q
Partial decoding Properties of proofs
L correctness instructions J

\

Decoder
Spec

18

Instruction

_ ~5,000
semntlcs _ Coq
RTL machine code

ELECTRICAL ENGINEERING

"~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Going Beyond Fault Isolation

 More advanced properties can be enforced via
software hardening
— Control-Flow Integrity (CFl)
— Data-Flow Integrity (DFI)
— Fine-grained memory-access control
— Memory safety
— Taint tracking

19 *~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Control-Flow Integrity:
Preventing Control-Flow
Hijacking Attacks

ELECTRICAL ENGINEERING

AND COMPUTER SCIENCE

Example of Control-Flow Hijacking

What if bar has a

foo: / bar: ... buffer overflow and
ret

call bas _Sena the return address is
=T S changed?
” ’ S
// / \\
/ / \
/ I \
4 \g <
Injected A library Code
code function gadgets

Stack smashing Return to libc Return-Oriented
Programming (ROP) attacks

ELECTRICAL ENGINEERING

"~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Control Flow Integrity (CFl) [Abadi et al.
CCS 2005]

1) Pre-determine a control-flow graph (CFG) of a
program

2) Enforce the CFG by instrumenting indirect
branches in the program
* |nstrumentation: insert checks before indirect branches

 Indirect branches include returns, indirect calls, and
indirect jumps

CFI Policy: execution of the instrumented program
follows the pre-determined CFG, even under attacks

ELECTRICAL ENGINEERING

22 "~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Control Flow Graphs (CFG)

e Nodes are addresses of basic

blocks of instructions | 4@}

e Edges connect control
instructions (jumps and
branches) to allowed
destination basic blocks

return
i

:
:
: i
! %
J

‘.’. oy ‘\“.. .‘

23 *~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

CFl: Mitigating Control-Flow Hijacking

Check if the target is
allowed by the CFG

call bag” Y‘ T3
/”’ // \\\
»? / \\
4 v <
Injected A libc Code
code function gadgets

Stack smashing Return to libc Return-Oriented
Programming (ROP) attacks

ELECTRICAL ENGINEERING

24 "~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Previous CFl Work

* Performance: 20-25% overhead in the original CFl
work

* No support for modularity

— All code, including libraries, must be available during static
compilation time

— No support for dynamic libraries (or code generated on
the fly by just-in-time compilers)

— Each program has to have its own instrumented version of
libraries

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

CFG Changes When Linking Modules

26

/Module 1)
fool: ... bar: ...
call bar ret
< \
\ \‘ /
|
1/
‘Module 2 _/After linking, new
fon?: -“ edges may be added
call bar ”
_

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Modular Control Flow Integrity (MCFl)
[Niu & Tan PLDI 2014, CCS 2015]

* CFG encoded as centralized tables
— Checks consult tables for CFl enforcement
— Updated during dynamic linking

* Benefits of centralized tables

— Tables separate from code; instrumentation unchanged
after tables changed

— Favorable memory cache effect
— Easier to achieve thread safety
— Easier to protect the tables against attacker corruption

27 'a PennState ELECTRICAL ENGINEERING

@ College of Engineering AND COMPUTER SCIENCE

MCFI System Flow

Address space
Program o= ----------

(I:)O(:e R MCEF| \Oad Code + Data Check
4 Tables

Meta info

G
Bld new CF
update tables

Dyrylinkin
Library yiyinking

Code
Data
Meta info

28 *~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

CFG Generation for C/C++

* A seemingly easy problem

— But the hard question is how to compute control-flow
edges out of indirect branches

— Quite complex considering function pointers, signal
handlers, virtual method calls, exceptions, etc.

* Tradeoff between precision and performance

— Remember it has to be performed online when libraries
are dynamically linked

— Sophisticated pointer analysis is perhaps too costly

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

MCFI’s Approach for CFG Generation

* A type-based approach for C/C++ code

* An MCFI module contains code, data, and meta
information (mostly about types)

 MCFI modules are generated from source code by an
augmented LLVM compiler

* Note: there are alternative approaches for CFG
generation

— Dr. Trent Jaeger’s group proposed a taint-based approach
— See posters

ELECTRICAL ENGINEERING

"~ PennState
@ College of Engineering AND COMPUTER SCIENCE

CFG Construction for Indirect Branches

* Indirect call “call fp”, where fp is of type t*

It is allowed to call function f if
(1) f’s type is some t’ that is structurally equivalent to t, and
(2) f’s address is taken in the code (i.e., “&f” is somewhere in
code)
e Returns: first construct a call graph; allow a return to
go back to any caller in the call graph

— Also need to take care of tail calls

e Other cases: indirect jumps; setjimp/longjmp,
variable-argument functions, signal handlers, ...

ELECTRICAL ENGINEERING

"~ PennState
@ College of Engineering AND COMPUTER SCIENCE

MCFI Performance Overhead on
SPEC2006

On average,2.9%.

10%
8%
6%
4%
2% I I i_1l
0% - m
-2%
-4%
XA LS N RN N G AN S N Q A & X 0
X & > S S b@'z} F & & S Q,V& ?06\ K LS
FF W0 3 W A P, E € E W E R S
Qe Q %7 X b‘b?). b‘b‘ b<9 % (0(0 g’) ~‘0°‘ Q)b‘. > % g‘b’\z +’Z> 1
& SR &> 0
™ 'O W
32 "~3 PennState ELECTRICAL ENGINEERING

@ College of Engineering AND COMPUTER SCIENCE

Improving the Security of
Languages with Managed
Runtimes

ELECTRICAL ENGINEERING

AND COMPUTER SCIENCE

Languages with Managed Runtimes

Java
JavaScript

/‘-—~\\.
\

\

|

34 *~3 PennState
3 College of Engineering

ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

Managed Runtimes and Security

* Alanguage with a managed runtime is typically safer

— The runtime restricts program behavior via dynamic
monitoring

— E.g., the Java Virtual Machine performs stack inspection

* However,

— Managed runtimes are developed in unsafe languages
(C++)

— They use Just-in-Time (JIT) compilation to generate native
code on the fly

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Performance Boosting Using

Just-In-Time Compilation (JIT)
((Writable and Executable!

g Java
g:\——/ —
Java

Optimized
Native Code

Interpretatick AIT compilation

<

JIT Compiler,
Written in C/C++

36 *~J PennState ELECTRICAL ENGINEERING
ineeri AND COMPUTER SCIENCE

Security Threats to JIT Compilation

e JIT compilers
— Typically written in C++ for high performance
— 500,000 to several million lines of code
— Memory corruption -> control-flow hijacking attacks

e JITted code (native code generated on the fly)
— JITted code overwriting [Chen et al., 2014]

* Because the region that contains JITted code is both writable and
executable

— JIT spraying [Blazakis, 2010]

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

JIT Spraying Example

JavaScript code [var y -
by the attacker Ox3COBBO9O ~ ©x3C80CD90

Normal code execution

X86 assembly: movl $0x3COBBO90, %eax; xorl $0x3C80CD90, %eax
Code bytes: B890B0OOB3C 3590CD803C

If the attacker hijacks the control flow and
jumps 1-byte ahead.

90 BOOB 3C35 90 CD860
nop; movb $0xB, %al; cmpb $0x35, %al; nop; int $0x80

The “exec” system call

38 *~3 PennState ELECTRICAL ENGINEERING
3 College of Engineering

AND COMPUTER SCIENCE

Observations

e JIT-spraying is the result of control-flow hijacking
 Modules in JIT compilation

— The code in a JIT compiler

— JITted code: dynamically generated code; dynamically
linked to the JIT compiler’s code

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

RockJIT [Niu & Tan CCS 2014]

e Extend Modular CFl to cover JIT compilation

* For the JIT compiler
— (Offline) Statically builds its CFG and encodes it as runtime
tables
* JITted code
— Treat each piece of newly generated code as a new module

— (Online) Build a new CFG that covers the new code and the
JIT compiler’s code

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Adapting A JIT Compiler to RockJIT

* The code-emission logic needs to be changed to emit
MCFI-compatible code (with CFl checks)

e JITted code manipulation should be changed to
invoke RocklJIT-provided safe primitives

— Code installation: when new code is generated by the JIT
compiler

— Code modification: during code optimizations such as
inline caching

— Code deletion: when code becomes obsolete

* ~800 lines of source code changes to Google’s V8

ELECTRICAL ENGINEERING

"~ PennState
@ College of Engineering AND COMPUTER SCIENCE

RocklJIT-Protected V8 on Octane 2
JavaScript Benchmarks

Avg overhead: 14.6% ‘ ‘
0

S QL AN & 2 .9) QO N°
N B O @ ,\5 9 »Y N &
\é{b \.@ Cfx :\«0 4?0“‘ q.‘z'& q,Q é@ %\o Q° é\é %@“ ((\é? 6&0 Q,o“' v Qeé
© S & S Y& @& ¥
R O
&'b

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Recap

e Compilers can be used to automatically harden code

— For fault isolation, for control-flow integrity, for ...

* To harden dynamic code (dynamic libraries, runtime
code generation, ...)
— Some work performed at runtime (e.g., CFG construction)
— Need to balance security and performance
— Also need to accommodate concurrency (not discussed)

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Some Ongoing Research

Automatic software partitioning

— Partitioning monolithic software into least-privileged
components

— Joint with Shen Liu and Dr. Trent Jaeger
* Binary-level reverse engineering and hardening
— Reverse engineer binary code and perform automatic hardening
— Joint with Dongrui Zeng
 Compiler-based side channel mitigation
— Static analysis for side channel identification
— Program transformation for side channel mitigation
— Joint with Rob Brotzman-Smith and Dr. Danfeng Zhang

e See posters for details

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Acknowledgements

* Sponsors

Co ogle

2% @0

. Thanks to students and coIIaborators

— Students: Ben Niu, Joseph Tassarotti, Edward Gan, Nirupama
Talele, Shen Liu, Dongrui Zeng, Rob-Brotzman Smith

— Collaborators: Greg Morrisett, Trent Jaeger, Danfeng Zhang,
Patrick McDaniel, Jean-Baptiste Tristan, Danfeng Yao, Ulfar
Erlingsson, Yu David Liu

* MCFI/RockJIT code open sourced:
https://github.com/mcfi

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

Backup slides

46

*~3 PennState
3 College of Engineering

ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

Automatic Software Hardening

* Integrate the reference monitor into the code (Inlined
Reference Monitors, IRM)

: P)
| Program [Revr'e, PIOBIE L orifen

0 Verifier: verifying that checks are inlined correctly
(so that the proper policy is enforced)

0 Benefits
o Small trusted computing base
o Low performance overhead (no context switch)
o Can enforce any safety policy [Schneider 1998]

47 *~3 PennState ELECTRICAL ENGINEERING
3 College of Engineering

AND COMPUTER SCIENCE

A Flavor of the x86 Model

* Syntax

— NOT: bool -> operand -> instr
Decode pattern

* Decoding
Definition NOT_p : grammar.instr :=
"1111" SS "011" SS anybit S ext_op_modrm2 "010" @
(fun p => NOT (fst p) (snd p))

Semantic action:
construct a NOT instr

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

A Flavor of the x86 Model, cont’d

e Semantics

Definition conv_NOT (pre: prefix) (w: bool) (op: operand) : Conv
unit :=

let load :=load_op pre win
let set :=set_op pre win
let seg := get_segment_op pre DS op in
PO <- load seg op;
max_unsigned <- load_Z _(max_unsigned size32);
pl <- arith xor_op p0 max_unsigned;
set seg pl op.

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

A Flavor of the Proofs

Lemma NOT _same_pc: forall pre w op,
same_pc (conv_NOT pre w op).

Proof.
NOT does not change
the program counter.

Qed.
Theorem rocksalt_correct: forall ..., ...
Proof.

Qed.

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

CFG Statistics for SPEC2006 Programs

SPEC2006 IBs IBTs EQCs

perlbench 3327 18378 1857

bzip2 1711 4064 1171 . .

gce 6108 50412 3058 IBS: # of indirect

mcf 1625 3851 1140 bra nCheS

gobmk 3908 14556 1631

hmmer 2038 7906 1471

sjeng 1777 4826 1220 |BTs: # of possible
:ggjant”m — - e indirect branch targets
milc 1825 5879 1310

lbm 1612 3839 1128 . .

. 1803 ca31 1360 EQCs: # of equivalence
namd 4795 17552 2829 classes; upper

dealll 13623 61392 7836 bounded by IBs

soplex 6304 22350 3499

povray 6274 28666 3704

omnetpp 7790 35689 4035

astar 4769 16695 2859

xalancbmk 31166 97186 11281

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

ID Tables

 |D tables encode a CFG

* Divide target addresses into equivalent classes, each
assigned an ID

* Branch ID table (Bary table)

— A map from the location of an indirect branch to the ID of the
equivalent class that the indirect branch is allowed to jump to

e Target ID table (Tary table)
— A map from an address to the ID of the equivalent class of the
address
* Conceptually, for an indirect branch,
— Load the branch ID using the address where the branch is
— Load the target ID using the real target address
— Compare the two IDs; if not the same, CFl violation

ELECTRICAL ENGINEERING

"~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Thread Safety of Tables

 The tables are global data shared by multiple threads

— One thread may read the tables to decide whether an indirect
branch is allowed

— Another thread loads a library and triggers an update of the
tables

* To avoid data races, wrap table operations into
transactions and use Software Transactional Memory

(STM)
— Check transaction (TxCheck): used before an indirect
branch

— Update transaction (TxUpdate): used when a library is
dynamically linked

ELECTRICAL ENGINEERING

"~ PennState
@ College of Engineering AND COMPUTER SCIENCE

Why STM?

A check transaction

— Performs speculative table reads, assuming no
threads are updating the tables

— If the assumption is wrong, it aborts and retries

 Why is this more efficient than, say, locking?

— Many more indirect branches compared to loading
libraries?

— Many more check transactions than update
transactions

— So check transactions rarely fail

*~J PennState ELECTRICAL ENGINEERING
@ College of Engineering AND COMPUTER SCIENCE

