
Automatic Side Channel Detection
and Prevention

Robert Brotzman-Smith, Gang Tan, Danfeng Zhang

Related Publications

How Cache Works Results

The existence of side-channels has been known for many decardes. They
exploit various mediums, such as power, network, memory, etc. All of these side
channels require that the adversary have access to a shared resource. With the
advent of cloud computing, it makes it more likely an attacker will have access
to the same physical hardware as a victim. A popular choice is to attack the
CPU cache since it is often shared amongst multiple users and can contain
sensitive information, such as an encryption key. Since CPU caches can leak a
great deal of information quickly, it is imperative that easy to use techniques are
developed to mitigate this threat.

The goal of this work is to provide developers with
an easy to use tool to remove side channels. So
far, we are able to automatically detect side
channels in a basic programming language. The
goal is to expand this to encompass an entire
language such as C as well as automatically
remove the side channels.

Applications

Overview

 I N
S R

Side Channel
Detection

C Source
Code

Side Channel
Removal

Executable

Goals

• Cryptography
• Ensure keys cannot be leaked

• Applications using private data
• Credit card numbers, SSN’s, etc.

• Detect potential side channels
• Point out what code causes the side

channel
• Eliminate the side channels

• Fix them via a compiler pass
• Do this automatically

• Done with little to no programmer
intervention

[1] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan
Reineke. 2013. CacheAudit: a tool for the static analysis of cache side channels.
In Proceedings of the 22nd USENIX conference on Security (SEC'13). USENIX
Association, Berkeley, CA, USA, 431-446.

[2] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM conference on Computer and
communications security (CCS '09). ACM, New York, NY, USA, 199-212.

Formalized a technique on a
basic programing language to
detect the potential for a cache
side channel. Our model currently
assumes that the CPU cache size
is infinite, this allows us to ignore
cache replacement policy in our
evaluation. The technique
essentially determines if two or
more cache states can exist
given a program.

If more than one cache state is
possible, there is the possibility of
a side channel. We implemented
this idea as an LLVM pass.
Currently, it can take a
constrained C program and
determines if a side-channel
could exist.

	Automatic Side Channel Detection and Prevention Robert Brotzman-Smith, Gang Tan, Danfeng Zhang

