An Overview of Our Network Research

Guohong Cao

Department of Computer Science and Engineering

The Pennsylvania State University

http://www.cse.psu.edu/~gcao

Mobile Computing and Networking (MCN) Lab

- MCN lab conducts research in many areas of wireless networks and mobile computing, emphasis on designing and evaluating mobile systems, protocols, and applications.
 - Current Projects: wireless networks, mobile systems, Internet of Things, wireless security and privacy
 - Support: NSF, Army Research Office, NIH/CDC, DoD/Muri, DoD/DTRA, PDG/TTC and member companies Cisco, Narus, Telcordia, IBM and 3ETI.
- Current students:
 - 10 PhD students
 - 2 visiting scholars
 - 2 MS students

• 19 PhDs

- ➤ Hao Zhu (8/2004), Qualcomm.
- Liangzhong Yin (12/2004), Microsoft.
- Wensheng Zhang (8/2005), Associate Professor, Iowa State University
- Hui Song (8/2007), AssistantProfessor, Frostburg State University
- > Jing Zhao (8/2008), Cisco Systems.
- Min Shao (12/2008), Microsoft
- Changlei Liu (5/2010), UMUC
- Yang Zhang (2/2011), Palo Alto Networks.
- Baojun Qiu (Co-chaired with J. Yen) 8/2011, eBay.
- Bo Zhao (10/2011), AT&T.

- > Zhichao Zhu (2/2012), Nokia.
- Qiang Zheng (5/2012), Google
- Wei Gao (5/2012), Assistant Professor, University of Tennessee.
- Qinghua Li (5/2013), Assistant Professor, University of Arkansas.
- Yi Wang (5/2013), Google.
- Jing Zhao (PhD, 9/2014), Google.
- Wenjie Hu (PhD, 2/2016), Microsoft.
- Xiaomei Zhang (PhD, 5/2016),University of South Carolina, Beaufort.
- > Xiao Sun (PhD, 9/2016), Facebook.
- 14 MS students went to various companies
- 5 visiting scholars

- Efficient Energy-Aware Data Access in Wireless Networks
 - Energy-aware computation offloading
 - Energy-aware Web Access
 - Energy-aware video streaming
- Resource-Aware Crowdsourcing
- Other projects

Background

- Battery is still the bottleneck of smartphone
 - Last for several hours for typical real-life usage
 - A breakthrough in battery technology seems unlikely

Design Energy-Aware Protocols and Systems

Background (con'd)

- Processing & storage capabilities are making significant improvements
 - Computationally intensive applications are increasing

Speech Recognition

Augmented Reality

Computationally intensive applications can quickly deplete the battery.

A viable solution: Computation Offloading

- Offload local computational tasks to resource-rich servers (e.g. cloud)
 - Benefit: improve performance & reduce energy consumption
 - **Cost: communication overhead**

Motivation

- Long tail problem in cellular networks
 - Power states
 - Promotion
 - Data transmission
 - Tail

- Existing offloading solutions ignore the long tail problem
 - Offload a task when *benefit ? cost+tail energy*

Optimal Computation Offloading

- Given *n* sequential computational tasks, what is the **best** offloading decision to minimize the energy?
- Challenge

- Cost of offloading a task cannot be estimated independently
- \blacksquare T_k 's energy depends on its location & previous offloaded task
- A naïve solution

Decision states for a task increase exponentially.

Testbed Evaluation

Samsung Galaxy with LTE data plan, OCR application to automatically recognize the characters in images and output the text

- Energy saving rate
 - 43% AllMobile / 39% AllServer / 34% ThinkAir

Energy-Efficient Web Browsing

- Reorganize the computation sequence of the web browser, so that it first runs the computations that will generate new data transmissions and retrieve these data from the web server.
 - Then, the web browser can put the wireless interface into low power state, and then run the remaining computations.
- After a webpage is downloaded, predict the user reading time on the webpage using Gradient Boosted Regression Trees (GBRT).

ICDCS'14, TPDS'15

Mobile Video Streaming

 Video streaming has become the largest data traffic on mobile devices

Figures in parentheses refer to traffic share in 2018, Source: Cisco VNI Mobile, 2014

Source: Cisco Virtual Network Index

CPU Frequency Scaling

- To address the challenge of how to download
- Reduce the total energy of mobile video streaming by adaptively adjusting the CPU frequency.
 - Considering the effects of CPU frequency on TCP throughput and power consumption.

Energy-Aware CPU Frequency Scaling

- Youtube: default interactive CPU governor to adjust the CPU frequency.
- Youtube+MaxMin: the highest CPU frequency during data transmission and the minimum CPU frequency without data transmission.
- Youtube+EFS: the Youtube app using our Energyaware Frequency Scaling algorithm (EFS) to adjust CPU frequency.
- Ourstreaming+EFS: the combination of optimized downloading schedule and the EFS algorithm. The buffer size is set to 10 MB.

Buffer Management

- ON-OFF scheme
 - Buffers lots of data and then turn the wireless interface off
 - Introduces more bandwidth wastage when a user skips
- Bitrate streaming
 - Downloads the video at the playback rate
 - Consumes more energy and introduces more delay

Buffer Management

- To address the challenge of how much to download, we introduce methods to predict whether a user tends to skip when watching a video.
- Based on the prediction result, different techniques are applied.
 - an optimized ON-OFF scheme in stable mode
 - a modified bitrate streaming in unstable mode

Network Quality Aware Downloading:

- To address the challenge of when and how much to download
 - Find a downloading schedule that minimizes the energy consumption of data transmission under the current network quality. (Dynamic Adaptive Streaming over HTTP (DASH) protocol)

- Under poor network quality, option 1 consumes $2\times60+10 = 130$ joules, and option 2 consumes $2\times30+10+0.5*(2\times30+10) = 105$ Joules
- Under good network quality, option 1 consumes 16 joules, option 2 consumes 19.5 joules.

- Efficient Energy-Aware Data Access in Wireless Networks
- Resource-Aware Crowdsourcing
 - SmartPhoto
 - VideoMec
- Other projects

Mobile Crowdsourcing

- Mobile crowdsourcing allows data gathering/sharing through smartphones
 - Waze app
 - Smart city/community

SmartPhoto

Key challenge: resource limitation

Mobihoc'14, icdcs'16, infocom'17

VideoMec

Crime investigation

Crime scene

Command center

- Others
 - Locating a missing child, investigating traffic accidents, reporting news, military applications, etc.

Existing Approaches

Content-based

- Upload all videos to cloud/cloudlets and analyze them using computer vision algorithms
- High resource consumption: redundancy/storage, processing, bandwidth

Description-based

- Generate video descriptions and only upload the descriptions for video search
- Inconvenient to tag manually; miss important information, e.g., a suspect caught in a tourist's video, but labeled as tour related

Video metadata based

 Automatically generate time, location, camera orientation, camera field of view, camera range, resolution, and other metadata as video descriptions

Improving Orientation Accuracy

Hybrid method

- Enhanced method
 - Calibrate the result of hybrid method by an orthonormalization process
- Results

Table 1: Average error in azimuth (degree)

	Nexus S	Nexus 4	Galaxy S III
Basic	$9.1(\pm 2.0)$	$8.2(\pm 1.5)$	$9.6(\pm 2.4)$
Hybrid	$5.7(\pm 1.9)$	$5.1(\pm 1.3)$	$7.3(\pm 1.7)$
Enhanced	$3.4(\pm 1.4)$	$1.3(\pm 0.7)$	$3.4(\pm 1.3)$

Challenges

- Scalable metadata indexing (R* tree in GIS)
- Comprehensive video query (filter-refine paradigm)
- Limited video uploading bandwidth, especially for time-sensitive or bandwidth-sensitive applications (select important parts; complementary to content-based approach).

- Efficient Energy-Aware Data Access in Wireless Networks
- Resource-Aware Crowdsourcing
- Other projects
 - Exploiting Embedded Sensors in Smartwatches for Health Monitoring
 - Privacy Disclosure Through Smart Meters: Reactive
 Power Based Attack and Defense

Adversarial Network Forensics in Software Defined Networking

Stefan Achleitner, Thomas La Porta, Trent Jaeger, Patrick McDaniel

INSTITUTE FOR NETWORKING AND SECURITY RESEARCH

- A new attack on SDN by showing how the detailed composition of flow rules can be reconstructed by network users without any prior knowledge of the SDN controller or its architecture.
 - ➤ Achieved by performing active probing and listening to the network traffic.
 - ➤ Discuss ways to prevent the introduced reconnaissance techniques.

Network Science Collaborative Technology Alliance (NSCTA)

Enhance Army's network science, technology & research program and:

- Create a Sustainable World-Class Network Science facility with critical mass
- Strengthen & Exploit Government-Industry-Academia Partnerships
- Adopt a Multidisciplinary, Fill-Spectrum Approach
- Accelerate the Transition and Improve the Relevance of Army-Sponsored Research
- Tightly Couple Efforts at ARL & CERDEC

Quality of Information for Semantically-Adaptive Networks (Qol-SAN)

Goal: Understand how to control network behaviors in response to semantic requests in context so that the capacity of the network to deliver relevant information can be maximized

Approach:

- Treat Network as an Information Source that supports decision making
- Jointly study semantics, networking & information processing
- New formal definition of network capacity considering the semantic attributes of information
- Human intent of information requests translated into processable form & decomposed into actionable info strategies

Task Leads: Tom La Porta

Organizations: ARL, BBN, CMU, CUNY, IBM, PSU, RPI, UCSB, UIUC, USC

Resource-Aware Approaches for Truth Analysis in social sensing

- Existing truth analysis:
 - Identify truth among conflicting claims based on information analysis techniques such as Maximum-likelihood estimation (MLE)
- <u>Problems</u>: hard to identify truth when
 - Available information or data are limited or have large conflicts
- <u>Solution</u>: utilize communication networks to adaptively collect multi-dimensions of information (data, image, video) from mobile users
 - Based on a feedback loop between information and communication network to collect the right information. (to verify some news related to ground troops, the information directly collected will be more convincing)
 - Improved data credibility (quality)
 - Increased cost in communication networks—tactical network
 - Goal: quantify the tradeoff between the increased network overhead and the enhanced data credibility.
 - Max-credibility problem:
 - Maximizing data credibility, network overhead below a specified value
 - Min-overhead problem:
 - Achieving the specified credibility, minimizing the network overhead

Thank you!

http://mcn.cse.psu.edu